Ejemplo n.º 1
0
    parser.add_argument('--field', '-f', help='Field to plot', default='PO2')
    parser.add_argument('--probeName', '-p', help='Name of the probe to plot')
    parser.add_argument('--from_time',
                        type=float,
                        help='Time from which to plot results',
                        default=0.0)
    figOptions = FigureOptions(parser)

    args = parser.parse_args()
    fieldName = args.field
    probeName = args.probeName
    from_time = args.from_time
    figOptions.parseOptions(args)
    figOptions.applyOptions()

    probes = loadProbes('domain', probeName, fieldName)
    EAT_dict = extractEATs('domain', probes, 0)
    f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
    plt.sca(ax1)  # set current axes
    plotType = 'minMaxTissue'
    # plotType = 'minMax'
    plotProbeMinMax(EAT_dict, None, from_time, plotType)
    ax1.set_xlim([0.15, 0.6])

    plt.sca(ax2)  # set current axes
    fileName = 'flow_hematocrit_EAT.csv'
    csv_dict = readPO2CSV(fileName, delimiter=',')
    plotAveragedBar(csv_dict)

    figOptions.adjustAxes()
    figOptions.setGrid()
Ejemplo n.º 2
0
    # convert to numpy arrays
    for key in return_dict.keys():
        return_dict[key] = np.asarray(return_dict[key])

    return return_dict


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--field', '-f', help='Field to plot', default='PO2')
    parser.add_argument('--probeName',
                        '-p',
                        help='Name of the probe directory',
                        default='probeMidstreamPO2')
    parser.add_argument('--from_time',
                        type=float,
                        help='Time from which to plot EATs',
                        default=0.0)

    args = parser.parse_args()
    fieldName = args.field
    probeName = args.probeName
    from_time = args.from_time

    probes = loadProbes('.', probeName, fieldName)
    minMaxDict = extractProbeMinMax('.', probes, 2, from_time)

    print 'Averaged minimum PO2: %g' % np.mean(minMaxDict['PO2_min'])
    print 'Averaged maximum PO2: %g' % np.mean(minMaxDict['PO2_max'])
Ejemplo n.º 3
0
    figOptions = FigureOptions(parser)

    args            = parser.parse_args()
    time            = args.time
    from_time       = args.from_time
    figOptions.parseOptions(args)
    figOptions.applyOptions()

    f, (ax1, ax2) = plt.subplots(1,2, sharey=True)
    plt.sca(ax1) # set current axes
    plotPO2ProfileEulerian('.', time)

    plt.sca(ax2) # set current axes
    probeNames = probeUtils.probeNames('.', suffix='PO2')
    fieldName = 'PO2'
    probes = [loadProbes('.', probeName, fieldName) for probeName in probeNames]
    EAT_dicts = [extractEATs('.', probe, 0) for probe in probes]
    plotCompareProbes(EAT_dicts, probes, from_time)
    ax2.set_ylabel('')

    figOptions.adjustAxes()
    figOptions.setGrid()

    # put (a) and (b) at the top left corner of each plot
    ax1.annotate(r'$(a)$', xy=(0.03, 0.91), xycoords='axes fraction')
    ax2.annotate(r'$(b)$', xy=(0.03, 0.91), xycoords='axes fraction')

    plotName = 'PO2XProfilesAndCompareProbes'
    figOptions.saveFig(plotName)