Ejemplo n.º 1
0
def load_usr_demand_profiles(settings):
    "Temp function to load user-generated demand profiles"
    from powergenome.external_data import make_usr_demand_profiles

    lp_path = settings["input_folder"] / settings["regional_load_fn"]
    hourly_load_profiles = make_usr_demand_profiles(lp_path, settings)

    if len(hourly_load_profiles) == 8784:
        remove_feb_29(hourly_load_profiles)

    return hourly_load_profiles
Ejemplo n.º 2
0
def make_demand_response_profiles(path, resource_name, settings):
    """Read files with DR profiles across years and scenarios. Return the hourly
    load profiles for a single resource in the model year.

    Parameters
    ----------
    path : path-like
        Where to load the file from
    resource_name : str
        Name of of the demand response resource
    settings : dict
        User-defined parameters from a settings file

    Returns
    -------
    DataFrame
        8760 hourly profiles of DR load for each region where the resource is available.
        Column names are the regions plus 'scenario'.
    """
    year = settings["model_year"]
    scenario = settings["demand_response"]

    df = pd.read_csv(path, header=[0, 1, 2, 3])

    # Use the MultiIndex columns to just get columns with the correct resource listed
    # in the top row of the csv. The resource name is dropped from the columns.
    resource_df = df.loc[:, resource_name]

    assert year in set(
        resource_df.columns.get_level_values(0).astype(int)
    ), f"The model year is not in the years of data for DR resource {resource_name}"

    resource_df = resource_df.loc[:, str(year)]

    assert scenario in set(
        resource_df.columns.get_level_values(0)
    ), f"The scenario {scenario} is not included for DR resource {resource_name}"

    resource_df = resource_df.loc[:, scenario]
    resource_df = resource_df.reset_index(drop=True)

    if len(resource_df) == 8784:
        remove_feb_29(resource_df)

    return resource_df
Ejemplo n.º 3
0
def make_load_curves(
    pudl_engine,
    settings,
    pudl_table="load_curves_ferc",
    settings_agg_key="region_aggregations",
):
    # IPM regions to keep. Regions not in this list will be dropped from the
    # dataframe
    keep_regions, region_agg_map = regions_to_keep(settings)

    # I'd rather use a sql query and only pull the regions of interest but
    # sqlalchemy doesn't allow table names to be parameterized.
    logger.info("Loading load curves from PUDL")
    load_curves = pd.read_sql_table(
        pudl_table,
        pudl_engine,
        columns=["region_id_epaipm", "time_index", "load_mw"])

    load_curves = load_curves.loc[load_curves.region_id_epaipm.isin(
        keep_regions)]

    # Increase demand to account for load growth
    load_curves = add_load_growth(load_curves, settings)

    # Set a new column "region" to the old column values. Then replace values for any
    # regions that are being aggregated
    load_curves.loc[:, "region"] = load_curves.loc[:, "region_id_epaipm"]

    load_curves.loc[
        load_curves.region_id_epaipm.isin(region_agg_map.keys()),
        "region"] = load_curves.loc[
            load_curves.region_id_epaipm.isin(region_agg_map.keys()),
            "region_id_epaipm"].map(region_agg_map)

    logger.info("Aggregating load curves in grouped regions")
    load_curves_agg = load_curves.groupby(["region", "time_index"]).sum()

    lc_wide = load_curves_agg.unstack(level=0)
    lc_wide.columns = lc_wide.columns.droplevel()

    if len(lc_wide) == 8784:
        lc_wide = remove_feb_29(lc_wide)

    # Shift load from UTC
    for col in lc_wide:
        lc_wide[col] = np.roll(lc_wide[col].values,
                               settings.get("utc_offset", 0))

    lc_wide.index.name = "time_index"
    if lc_wide.index.min() == 0:
        lc_wide.index = lc_wide.index + 1

    return lc_wide
Ejemplo n.º 4
0
def make_distributed_gen_profiles(pudl_engine, settings):
    """Create 8760 annual generation profiles for distributed generation in regions.
    Uses a distribution loss parameter in the settings file when DG generation is
    defined a fraction of delivered load.

    Parameters
    ----------
    dg_profiles_path : path-like
        Where to load the file from
    pudl_engine : sqlalchemy.Engine
        A sqlalchemy connection for use by pandas. Needed to create base load profiles.
    settings : dict
        User-defined parameters from a settings file

    Returns
    -------
    DataFrame
        Hourly generation profiles for DG resources in each region. Not all regions
        need to be accounted for.

    Raises
    ------
    KeyError
        If the calculation method specified in settings is not 'capacity' or 'fraction_load'
    """

    year = settings["model_year"]
    dg_profiles_path = (Path(settings["input_folder"]) /
                        settings["distributed_gen_profiles_fn"])

    hourly_norm_profiles = pd.read_csv(dg_profiles_path)
    profile_regions = hourly_norm_profiles.columns

    dg_calc_methods = settings["distributed_gen_method"]
    dg_calc_values = settings["distributed_gen_values"]

    assert (
        year in dg_calc_values
    ), f"The years in settings parameter 'distributed_gen_values' do not match the model years."

    for region in dg_calc_values[year]:
        assert region in set(profile_regions), (
            "The profile regions in settings parameter 'distributed_gen_values' do not\n"
            f"match the regions in {settings['distributed_gen_profiles_fn']} for year {year}"
        )

    if "fraction_load" in dg_calc_methods.values():
        regional_load = make_load_curves(pudl_engine, settings)

    dg_hourly_gen = pd.DataFrame(columns=dg_calc_methods.keys())

    for region, method in dg_calc_methods.items():
        region_norm_profile = hourly_norm_profiles[region]
        region_calc_value = dg_calc_values[year][region]

        if method == "capacity":
            dg_hourly_gen[region] = calc_dg_capacity_method(
                region_norm_profile, region_calc_value)
        elif method == "fraction_load":
            region_load = regional_load[region]
            dg_hourly_gen[region] = calc_dg_frac_load_method(
                region_norm_profile, region_calc_value, region_load, settings)
        else:
            raise KeyError(
                "The settings parameter 'distributed_gen_method' can only have key "
                "values of 'capapacity' or 'fraction_load' for each region.\n"
                f"The value in your settings file is {method}")

    if len(dg_hourly_gen) == 8784:
        remove_feb_29(dg_hourly_gen)

    return dg_hourly_gen