Ejemplo n.º 1
0
def create_cits_plots(data, title_=""):
    fig, ax1 = plt.subplots(1, 1, figsize=(7, 7))
    fit = powerlaw.Fit(data, discrete=True)
    plt.suptitle(title_, fontsize=30)

    a = fit.power_law.alpha
    xmin = fit.power_law.xmin

    pdf = powerlaw.pdf(data)
    bins = pdf[0]
    widths = bins[1:] - bins[0:-1]
    centers = bins[0:-1] + 0.5 * widths

    xc, yc = find_pdf_at_x(xmin, pdf[0], pdf[1])
    x_, y_ = fitted_pl_xy(a, xc, yc, xmin, np.max(pdf[0]))
    ax1.set_xlabel("Number of word occurances", fontsize=20)
    ax1.set_ylabel("Probability density function", fontsize=20)
    ax1.plot(centers, pdf[1], 'o')
    powerlaw.plot_pdf(data, ax=ax1, color='b', label='APS data')
    ax1.plot(x_, y_, 'r--', label=r'Power law fit: $x^{-%4.3f}$' % (a))
    #ax1.plot([xmin,xmin],[10**(-16),1],'--',color="grey", label=r'$\rm x_{min}=%d$' % (xmin))
    ax1.legend(loc=0, fontsize=15)

    fig.text(0.95,
             0.05,
             '(c) 2018, P.G.',
             fontsize=10,
             color='gray',
             ha='right',
             va='bottom',
             alpha=0.5)
    plt.show()
Ejemplo n.º 2
0
def plot_basics(data, data_inst, fig, units):
    '''
    This function is the main plotting function. Adapted from Newman's powerlaw package.
    '''
    import pylab
    pylab.rcParams['xtick.major.pad'] = '8'
    pylab.rcParams['ytick.major.pad'] = '8'
    pylab.rcParams['font.sans-serif'] = 'Arial'

    from matplotlib import rc
    rc('font', family='sans-serif')
    rc('font', size=10.0)
    rc('text', usetex=False)

    from matplotlib.font_manager import FontProperties

    panel_label_font = FontProperties().copy()
    panel_label_font.set_weight("bold")
    panel_label_font.set_size(12.0)
    panel_label_font.set_family("sans-serif")

    n_data = 1
    n_graphs = 4
    from powerlaw import plot_pdf, Fit, pdf
    ax1 = fig.add_subplot(n_graphs, n_data, data_inst)
    x, y = pdf(data, linear_bins=True)
    ind = y > 0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5, label='data')
    plot_pdf(data[data > 0], ax=ax1, color='b', linewidth=2, label='PDF')
    from pylab import setp
    setp(ax1.get_xticklabels(), visible=False)
    plt.legend(loc='bestloc')

    ax2 = fig.add_subplot(n_graphs, n_data, n_data + data_inst, sharex=ax1)
    plot_pdf(data[data > 0], ax=ax2, color='b', linewidth=2, label='PDF')
    fit = Fit(data, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle=':', color='g', label='w/o xmin')
    p = fit.power_law.pdf()

    ax2.set_xlim(ax1.get_xlim())
    fit = Fit(data, discrete=True, xmin=3)
    fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g', label='w xmin')
    from pylab import setp
    setp(ax2.get_xticklabels(), visible=False)
    plt.legend(loc='bestloc')

    ax3 = fig.add_subplot(n_graphs, n_data,
                          n_data * 2 + data_inst)  #, sharex=ax1)#, sharey=ax2)
    fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g', label='powerlaw')
    fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r', label='exp')
    fit.plot_pdf(ax=ax3, color='b', linewidth=2)

    ax3.set_ylim(ax2.get_ylim())
    ax3.set_xlim(ax1.get_xlim())
    plt.legend(loc='bestloc')
    ax3.set_xlabel(units)
Ejemplo n.º 3
0
def plot_basics(data, data_inst, fig, units):
    '''
    This function is the main plotting function. Adapted from Newman's powerlaw package.
    '''
    import pylab
    pylab.rcParams['xtick.major.pad']='8'
    pylab.rcParams['ytick.major.pad']='8'
    pylab.rcParams['font.sans-serif']='Arial'

    from matplotlib import rc
    rc('font', family='sans-serif')
    rc('font', size=10.0)
    rc('text', usetex=False)

    from matplotlib.font_manager import FontProperties

    panel_label_font = FontProperties().copy()
    panel_label_font.set_weight("bold")
    panel_label_font.set_size(12.0)
    panel_label_font.set_family("sans-serif")

    n_data = 1
    n_graphs = 4
    from powerlaw import plot_pdf, Fit, pdf
    ax1 = fig.add_subplot(n_graphs,n_data,data_inst)
    x, y = pdf(data, linear_bins=True)
    ind = y>0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5, label='data')
    plot_pdf(data[data>0], ax=ax1, color='b', linewidth=2, label='PDF')
    from pylab import setp
    setp( ax1.get_xticklabels(), visible=False)
    plt.legend(loc = 'bestloc')

    ax2 = fig.add_subplot(n_graphs,n_data,n_data+data_inst, sharex=ax1)
    plot_pdf(data[data>0], ax=ax2, color='b', linewidth=2, label='PDF')
    fit = Fit(data, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle=':', color='g',label='w/o xmin')
    p = fit.power_law.pdf()

    ax2.set_xlim(ax1.get_xlim())
    fit = Fit(data, discrete=True,xmin=3)
    fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g', label='w xmin')
    from pylab import setp
    setp(ax2.get_xticklabels(), visible=False)
    plt.legend(loc = 'bestloc')

    ax3 = fig.add_subplot(n_graphs,n_data,n_data*2+data_inst)#, sharex=ax1)#, sharey=ax2)
    fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g',label='powerlaw')
    fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r',label='exp')
    fit.plot_pdf(ax=ax3, color='b', linewidth=2)

    ax3.set_ylim(ax2.get_ylim())
    ax3.set_xlim(ax1.get_xlim())
    plt.legend(loc = 'bestloc')
    ax3.set_xlabel(units)
def plot_basics(data, data_inst, fig, units):
    from powerlaw import plot_pdf, Fit, pdf
    annotate_coord = (-.4, .95)
    ax1 = fig.add_subplot(n_graphs,n_data,data_inst)
    x, y = pdf(data, linear_bins=True)
    ind = y>0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5)
    plot_pdf(data[data>0], ax=ax1, color='b', linewidth=2)
    from pylab import setp
    setp( ax1.get_xticklabels(), visible=False)

    if data_inst==1:
        ax1.annotate("A", annotate_coord, xycoords="axes fraction", fontproperties=panel_label_font)

    
    from mpl_toolkits.axes_grid.inset_locator import inset_axes
    ax1in = inset_axes(ax1, width = "30%", height = "30%", loc=3)
    ax1in.hist(data, normed=True, color='b')
    ax1in.set_xticks([])
    ax1in.set_yticks([])

    
    ax2 = fig.add_subplot(n_graphs,n_data,n_data+data_inst, sharex=ax1)
    plot_pdf(data, ax=ax2, color='b', linewidth=2)
    fit = Fit(data, xmin=1, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle=':', color='g')
    p = fit.power_law.pdf()

    ax2.set_xlim(ax1.get_xlim())
    
    fit = Fit(data, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g')
    from pylab import setp
    setp( ax2.get_xticklabels(), visible=False)

    if data_inst==1:
       ax2.annotate("B", annotate_coord, xycoords="axes fraction", fontproperties=panel_label_font)        
       ax2.set_ylabel(u"p(X)")# (10^n)")
        
    ax3 = fig.add_subplot(n_graphs,n_data,n_data*2+data_inst)#, sharex=ax1)#, sharey=ax2)
    fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g')
    fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r')
    fit.plot_pdf(ax=ax3, color='b', linewidth=2)
    
    ax3.set_ylim(ax2.get_ylim())
    ax3.set_xlim(ax1.get_xlim())
    
    if data_inst==1:
        ax3.annotate("C", annotate_coord, xycoords="axes fraction", fontproperties=panel_label_font)

    ax3.set_xlabel(units)
Ejemplo n.º 5
0
def plot_gamma(graphe):
    #fitness = powerlaw.Fit(graphe.degree().values(),xmin =1)
    #print fitness.alpha,fitness.xmin
    alpha = 1 + (graphe.number_of_nodes() /
                 sum(np.log(graphe.degree().values())))

    #powerlaw.plot_pdf(graphe.degree().values())
    xdata, ydata = powerlaw.pdf(graphe.degree().values())

    vala = {}
    xvala = []
    yvala = []
    somme = 0
    exceptions = []
    last_exception = -1
    for value in graphe.degree().values():
        somme += 1
        try:
            vala[value] += 1
        except:
            vala[value] = 1

    for degree in range(1, max(vala.keys()) + 1):
        try:
            yvala.append(float(vala[degree]) / somme)
            xvala.append(degree)

        except:
            if len(exceptions) == 0:
                last_exception = degree
                #print degree
            exceptions.append(degree)
    #slope, intercept, r_value, p_value, std_err = stats.linregress(
    #np.log(xvala[:last_exception]),np.log(yvala[:last_exception]))

    #print slope

    x = xvala

    plt.plot(x, np.power(x, -alpha), color="orange")
    #plt.plot(x,np.power(x,-2.34296138661),color ="blue")
    #plfit.plfit(graphe.degree().values(),quiet = False,verbose = True,silent = False)
    plt.plot(xvala, yvala, color="black")
    plt.yscale('log')
    plt.xscale('log')
    #plt.ylim([0,0.4])
    #plt.xlim([0,20])
    plt.show()
Ejemplo n.º 6
0
def plot_gamma(graphe) :
    #fitness = powerlaw.Fit(graphe.degree().values(),xmin =1)
    #print fitness.alpha,fitness.xmin
    alpha = 1+(graphe.number_of_nodes()/sum(np.log(graphe.degree().values())))

    #powerlaw.plot_pdf(graphe.degree().values())
    xdata,ydata = powerlaw.pdf(graphe.degree().values())

    vala ={}
    xvala=[]
    yvala=[]
    somme = 0
    exceptions =[]
    last_exception = -1
    for value in graphe.degree().values() :
        somme+=1
        try :
            vala[value]+=1
        except :
            vala[value] =1

    for degree in range(1,max(vala.keys())+1) :
        try :
            yvala.append(float(vala[degree])/somme)
            xvala.append(degree)

        except :
            if len(exceptions) ==0 :
                last_exception =degree
                #print degree
            exceptions.append(degree)
    #slope, intercept, r_value, p_value, std_err = stats.linregress(
        #np.log(xvala[:last_exception]),np.log(yvala[:last_exception]))

    #print slope

    x = xvala

    plt.plot(x,np.power(x,-alpha),color = "orange")
    #plt.plot(x,np.power(x,-2.34296138661),color ="blue")
    #plfit.plfit(graphe.degree().values(),quiet = False,verbose = True,silent = False)
    plt.plot(xvala,yvala,color = "black")
    plt.yscale('log')
    plt.xscale('log')
    #plt.ylim([0,0.4])
    #plt.xlim([0,20])
    plt.show()
    #xdata,ydata=powerlaw.pdf(graphe.degree().values())
def power_law_plot(graph,
                   log=True,
                   linear_binning=False,
                   bins=90,
                   draw=True,
                   x_min=None):
    degree = list(dict(graph.degree()).values())

    #powerlaw does not work if a bin is empty
    #sum([1 if x == 0 else 0 for x in list(degree)])
    corrected_degree = [x for x in degree if x != 0]
    if x_min is not None:
        corrected_degree = [x for x in corrected_degree if x > x_min]
    # fit powerlaw exponent and return distribution
    pwl_distri = pwl.pdf(corrected_degree, bins=bins)

    if draw:
        degree_distribution = Counter(degree)

        # Degree distribution
        x = []
        y = []
        for i in sorted(degree_distribution):
            x.append(i)
            y.append(degree_distribution[i] / len(graph))
        #plot our distributon compared to powerlaw

        #plt.figure(figsize=(10,7))
        plt.yscale('log')
        plt.xscale('log')
        plt.plot(x, y, 'ro')

        plt.xticks(fontsize=15)
        plt.yticks(fontsize=15)

        plt.xlabel('$k$', fontsize=16)
        plt.ylabel('$P(k)$', fontsize=16)

        if linear_binning:
            pwl.plot_pdf(corrected_degree,
                         linear_bins=True,
                         color='black',
                         linewidth=2)
        else:
            pwl.plot_pdf(corrected_degree, color='black', linewidth=2)

    return pwl_distri
Ejemplo n.º 8
0
def analyze_pk(g, figfile):
    ks = [x[1] for x in g.degree()]
    results = powerlaw.Fit(ks, discrete=True)

    figPDF = results.power_law.plot_pdf(label=r"fit($\alpha$: %.2f, $x_{min}$: %d)" % (results.alpha, results.xmin)) 
    figPDF.set_ylabel("P(k)")
    figPDF.set_xlabel("k")

    cdf = {z[0]:z[1] for z in zip(*powerlaw.cdf(ks))}
    cdf_xmin = cdf[results.xmin]

    bin_edges, prob = powerlaw.pdf(ks)
    x = [ (bin_edges[i]+bin_edges[i+1])/2.0 for i in range(0, len(bin_edges)-1) ]
    plt.plot(x, prob/(1.0-cdf_xmin), label="data")
    plt.legend()
    plt.savefig(figfile)

    return (results.power_law.alpha, results.power_law.xmin)
def plot_basics(filepath, ax, c):
    tweetcounts = np.genfromtxt(filepath, usecols=(1,), comments=None, dtype=np.int32, unpack=True)

    ###
    x, y = powerlaw.pdf(tweetcounts, linear_bins=True)
    ind = y > 0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax.scatter(x, y, color=c, s=.5)
    # ax.set_xscale('log')
    ax.set_yscale('log')
    # powerlaw.plot_pdf(tweetcounts, ax=ax, color='b', linewidth=2)
    # ###
    #
    # from mpl_toolkits.axes_grid.inset_locator import inset_axes
    # ax1in = inset_axes(ax, width="30%", height="30%", loc=3)
    # ax1in.hist(tweetcounts, density=True, color='b')
    # ax1in.set_xticks([])
    # ax1in.set_yticks([])
    #
    # ###
    # fit = powerlaw.Fit(tweetcounts, xmin=1, discrete=True)
    # fit.power_law.plot_pdf(ax=ax, linestyle=':', color='g')
    #
    # ####
    # fit = powerlaw.Fit(tweetcounts, discrete=True)
    # fit.power_law.plot_pdf(ax=ax, linestyle='--', color='g')
    #
    # ax.set_xlabel(r"Tweetcount")
    # ax.set_ylabel(u"p(X)")
    #
    # alpha = fit.power_law.alpha
    # xmin = fit.power_law.xmin
    # textstr = 'alpha: {0:.4f}\nxmin: {1}\nperiod: {2}'.format(alpha, xmin, text)
    # props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
    # ax.text(0.5, 0.95, textstr, transform=ax.transAxes, fontsize=14, verticalalignment='top', bbox=props)
    # ####

    return
Ejemplo n.º 10
0
def create_cits_plots(data, title_=""):
#    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14,7) )
    fig, ax1 = plt.subplots(1, 1, figsize=(7,7) )
    fit = powerlaw.Fit(data, discrete=True)
    plt.suptitle(title_,fontsize=30)

    a = fit.power_law.alpha
    xmin = fit.power_law.xmin

    pdf = powerlaw.pdf(data)
    bins = pdf[0]
    widths = bins[1:] - bins[0:-1]
    centers = bins[0:-1] + 0.5*widths

    xc,yc = find_pdf_at_x(xmin, pdf[0], pdf[1])
    x_, y_ = fitted_pl_xy(a, xc, yc, xmin, np.max(pdf[0]) )

#### AX1
    ax1.set_xlabel("Number of citations", fontsize=20)
    ax1.set_ylabel("Probability density function", fontsize=20)
    ax1.plot(centers,pdf[1],'o')
    powerlaw.plot_pdf(data, ax=ax1, color='b',label='APS data')
    ax1.plot(x_, y_, 'r--', label=r'Power law fit: $x^{-%4.3f}$' % ( a ) )
#    ax1.plot(xc,yc,'o',color='grey')
    ax1.plot([xmin,xmin],[10**(-16),1],'--',color="grey", label=r'$\rm x_{min}=%d$' % (xmin))
    ax1.legend(loc=0, fontsize=15)

#### AX2
#    ax2.set_xlabel(r'$\rm x_{min}$', fontsize=20)
#    ax2.set_ylabel(r'$\rm D, \sigma, \alpha$', fontsize=20)
#    ax2.plot(fit.xmins, fit.Ds, label=r'$D$')
#    ax2.plot(fit.xmins, fit.sigmas, label=r'$\sigma$', linestyle='--')
#    ax2.plot(fit.xmins, fit.sigmas/fit.alphas, label=r'$\sigma /\alpha$', linestyle='--')
#    ax2.legend(loc=0, fontsize=15)
#    ax2.set_xlim( [0, 200] )
#    ax2.set_ylim( [0, .25] )

    fig.text(0.95, 0.05, '(c) 2018, P.G.',fontsize=10, color='gray', ha='right', va='bottom', alpha=0.5)
    plt.show()
def plot_basics(data, data_inst, fig, units):
    from powerlaw import plot_pdf, Fit, pdf
    annotate_coord = (-.1, .95)
    # annotate_coord = (1.1, .95)

    ax1 = fig.add_subplot(n_graphs, n_data, data_inst, visible=False)
    x, y = pdf(data, linear_bins=True)
    ind = y > 0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5)
    plot_pdf(data[data > 0], ax=ax1, color='b', linewidth=2)
    from pylab import setp
    setp(ax1.get_xticklabels(), visible=False)

    # ABC
    # if data_inst == 1:
    # ax1.annotate("A", annotate_coord, xycoords="axes fraction", fontproperties=panel_label_font)
    # ax1.set_ylabel(u"p(X)")
    # from mpl_toolkits.axes_grid.inset_locator import inset_axes
    # ax1in = inset_axes(ax1, width="30%", height="30%", loc=3)
    # ax1in.hist(data, density=True, color='b')
    # ax1in.set_xticks([])
    # ax1in.set_yticks([])
    # ax1.set_xlabel(units)

    ax2 = fig.add_subplot(n_graphs,
                          n_data,
                          n_data + data_inst,
                          sharex=ax1,
                          visible=False)
    plot_pdf(data, ax=ax2, color='b', linewidth=2, label="pdf of data")
    fit = Fit(data, xmin=1, discrete=True)
    fit.power_law.plot_pdf(ax=ax2,
                           linestyle=':',
                           color='g',
                           label="power law fit")
    p = fit.power_law.pdf()

    ax2.set_xlim(ax1.get_xlim())

    fit = Fit(data, discrete=True)
    fit.power_law.plot_pdf(ax=ax2,
                           linestyle='--',
                           color='g',
                           label="power law fit--opt xmin")
    from pylab import setp
    setp(ax2.get_xticklabels(), visible=True)

    # if data_inst == 1:
    ax2.annotate("B",
                 annotate_coord,
                 xycoords="axes fraction",
                 fontproperties=panel_label_font)
    ax2.set_ylabel(u"p(X)")  # (10^n)")
    handles, labels = ax2.get_legend_handles_labels()
    ax2.legend(handles, labels, loc=3)
    ax2.set_xlabel(units)

    ax3 = fig.add_subplot(n_graphs, n_data, n_data * 2 +
                          data_inst)  # , sharex=ax1)#, sharey=ax2)
    fit.power_law.plot_pdf(ax=ax3,
                           linestyle='--',
                           color='g',
                           label="power law fit\n(opt-min)")
    fit.exponential.plot_pdf(ax=ax3,
                             linestyle='--',
                             color='r',
                             label="exponential fit\n(opt-min)")

    fit.plot_pdf(ax=ax3, color='b', linewidth=2, label="PDF\n(opt-min)")

    ax3.set_ylim(ax2.get_ylim())
    ax3.set_xlim(ax1.get_xlim())
    handles, labels = ax3.get_legend_handles_labels()
    ax3.legend(handles, labels, loc=3, fontsize=12)
    ax3.set_xlabel(units, fontsize=15)

    # if data_inst == 1:
    ax3.annotate("C",
                 annotate_coord,
                 xycoords="axes fraction",
                 fontproperties=panel_label_font)
    ax3.set_ylabel(u"p(X)", fontsize=15)
def main():

	G = nx.Graph()
	fileIn = open('brazil.txt','r')
	for line in fileIn:
	    m,f,t = line.split(' ')
	    G.add_node(m,gender='m')
	    G.add_node(f,gender='f')
	    G.add_edge(m,f)

	degree_sequence_female =sorted([d for n,d in G.degree().iteritems() if G.node[n]['gender']== 'f'  ], reverse=True) # degree sequence
	degree_sequence_male =sorted([d for n,d in G.degree().iteritems() if G.node[n]['gender']== 'm'  ], reverse=True) # degree sequence



	male_fraction = float(len(degree_sequence_male))/(len(degree_sequence_male) + len(degree_sequence_female))
	print male_fraction
	e_male,e_female = analytic_exponent(G,male_fraction)

	pdf_female = powerlaw.pdf(degree_sequence_female)
	x_fe =  list(pdf_female[0]) ; y_fe = list(pdf_female[1])
	del x_fe[-1]

	pdf_male = powerlaw.pdf(degree_sequence_male)
	x_ma =  list(pdf_male[0]) ; y_ma = list(pdf_male[1])
	del x_ma[-1]

	data_fe = degree_sequence_female

	plt.scatter(x_fe,y_fe,color=maj_color  )
	fit_fe = powerlaw.Fit(data_fe, discrete=True ,xmax = 200 , xmin = 20 )
	alpha_fe = fit_fe.power_law.alpha

	figFIT = fit_fe.power_law.plot_pdf(color=maj_color, linestyle='--' , label=r"(workers) Fit: %.2f, Model: %.2f"%(alpha_fe,e_female) )

	data_ma = degree_sequence_male

	plt.scatter(x_ma,y_ma,color=min_color )
	fit_ma = powerlaw.Fit(data_ma, discrete=False ,xmax = 200 , xmin = 20)
	alpha_ma = fit_ma.power_law.alpha

	fit_ma.power_law.plot_pdf(color=min_color, linestyle='--' , label=r"(buyers) Fit: %.2f, Model: %.2f"%(alpha_ma,e_male) )

	plt.xlim([1,200])


	#plt.tight_layout()

	handles, labels = figFIT.get_legend_handles_labels()
	leg = figFIT.legend(handles, labels, loc=3 )
	leg.draw_frame(False)


	figFIT.text(9,0.18,'A) Sexual contacts',fontsize = 24)
	figFIT.text(2,0.001,r'$f_{min} = 0.40$',fontsize = 26)


	figFIT.set_ylabel("$p(k)$" , size = 26)
	figFIT.set_xlabel("degree $(k)$ " , size = 26)

	figname = 'deg_dist_brazil_scatter'
	plt.savefig(figname+'.eps', bbox_inches='tight')
	plt.savefig(figname+'.svg', bbox_inches='tight')
def main():

    G = nx.Graph()
    fileIn = 'sampled_APS_pacs052030.gexf'
    G = nx.read_gexf(fileIn)

    degree_sequence_maj = sorted([
        d for n, d in G.degree().iteritems() if G.node[n]['pacs'] == '05.30.-d'
    ],
                                 reverse=True)  # degree sequence
    degree_sequence_min = sorted([
        d for n, d in G.degree().iteritems() if G.node[n]['pacs'] == '05.20.-y'
    ],
                                 reverse=True)  # degree sequence

    maj_fraction = float(len(degree_sequence_maj)) / (
        len(degree_sequence_maj) + len(degree_sequence_min))

    maj_maj = maj_min = min_min = 0

    for e in G.edges():
        n1, n2 = e
        g1 = G.node[n1]['pacs']
        g2 = G.node[n2]['pacs']

        if g1 == g2:
            if g1 == '05.20.-y':
                min_min += 1
            else:
                maj_maj += 1
        else:
            maj_min += 1

    h_aa = 0.88
    h_bb = 1
    e_min = 3.4
    e_maj = 2.8

    data_min = degree_sequence_min
    data_pdf = powerlaw.pdf(data_min)
    x = list(data_pdf[0])
    y = data_pdf[1]
    del x[-1]
    #scatter(x,y,color='r' )
    #plot(range(10),range(10))

    data_maj = degree_sequence_maj

    maj_pdf = powerlaw.pdf(data_maj)
    x_maj = list(maj_pdf[0])
    del x_maj[-1]
    y_maj = maj_pdf[1]

    data_min = degree_sequence_min
    data_pdf = powerlaw.pdf(data_min)

    plt.scatter(x, y, color=min_color)
    #figPDF = powerlaw.plot_pdf(data_min,color='r', linewidth=2  )
    fit_min = powerlaw.Fit(data_min, xmax=30, xmin=4)
    alpha_min = fit_min.power_law.alpha

    figFIT = fit_min.power_law.plot_pdf(color=min_color,
                                        linestyle='--',
                                        label=r"(CSM) Fit: %.2f, Model: %.2f" %
                                        (alpha_min, e_min))

    data_maj = degree_sequence_maj

    plt.scatter(x_maj, y_maj, color=maj_color)

    #powerlaw.plot_pdf(data_maj,color='b', linewidth=2  )
    fit_maj = powerlaw.Fit(data_maj, xmax=80, xmin=5)
    alpha_maj = fit_maj.power_law.alpha

    fit_maj.power_law.plot_pdf(color=maj_color,
                               linestyle='--',
                               label=r"(QSM) Fit: %.2f , Model: %.2f" %
                               (alpha_maj, e_maj))

    handles, labels = figFIT.get_legend_handles_labels()
    leg = figFIT.legend(handles, labels, loc=3)
    leg.draw_frame(False)

    plt.xlim([1, 40])

    figFIT.text(7, 0.18, 'C) Scientific citation', fontsize=24)
    figFIT.text(2, 0.01, r'$f_{min} = 0.38$', fontsize=26)

    figFIT.set_ylabel(r"$p(k)$", size=26)
    figFIT.set_xlabel(r"degree $(k)$", size=26)

    figname = 'deg_dist_APS_05'
    plt.savefig(figname + '.eps', bbox_inches='tight')
    plt.savefig(figname + '.svg', bbox_inches='tight')
Ejemplo n.º 14
0
def plot_basics(data, data_inst, fig, units):

    ### Setup ###
    from powerlaw import plot_pdf, Fit, pdf
    import pylab
    pylab.rcParams['xtick.major.pad'] = '8'
    pylab.rcParams['ytick.major.pad'] = '8'
    #pylab.rcParams['font.sans-serif']='Arial'

    from matplotlib.font_manager import FontProperties

    panel_label_font = FontProperties().copy()
    panel_label_font.set_weight("bold")
    panel_label_font.set_size(30.0)
    panel_label_font.set_family("sans-serif")
    n_data = 2
    n_graphs = 4
    annotate_coord = (-.4, .95)
    #############

    ax1 = fig.add_subplot(n_graphs, n_data, data_inst)
    x, y = pdf(data, linear_bins=True)
    ind = y > 0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5)
    plot_pdf(data[data > 0], ax=ax1, color='b', linewidth=2)
    from pylab import setp
    setp(ax1.get_xticklabels(), visible=False)

    if data_inst == 1:
        ax1.annotate("A",
                     annotate_coord,
                     xycoords="axes fraction",
                     fontproperties=panel_label_font)

    ax2 = fig.add_subplot(n_graphs, n_data, n_data + data_inst, sharex=ax1)

    plot_pdf(data, ax=ax2, color='b', linewidth=2)
    fit = Fit(data, xmin=1, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g')
    _ = fit.power_law.pdf()
    ax2.set_xlim((1, max(x)))

    setp(ax2.get_xticklabels(), visible=False)

    if data_inst == 1:
        ax2.annotate("B",
                     annotate_coord,
                     xycoords="axes fraction",
                     fontproperties=panel_label_font)
        ax2.set_ylabel(u"p(X)")  # (10^n)")

    ax3 = fig.add_subplot(n_graphs, n_data,
                          n_data * 2 + data_inst)  #, sharex=ax1)#, sharey=ax2)
    fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g')
    fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r')
    fit.lognormal.plot_pdf(ax=ax3, linestyle=':', color='r')
    fit.plot_pdf(ax=ax3, color='b', linewidth=2)

    ax3.set_ylim(ax2.get_ylim())
    ax3.set_xlim(ax1.get_xlim())

    if data_inst == 1:
        ax3.annotate("C",
                     annotate_coord,
                     xycoords="axes fraction",
                     fontproperties=panel_label_font)

    ax3.set_xlabel(units)
Ejemplo n.º 15
0
def plplot(data, title, save=False, save_path=None):
    data = np.array(data)

    fig = plt.figure(figsize=(18,6))
    fig.suptitle(title)
    
    # === A ===
    ax1 = fig.add_subplot(1,3,1)

    # 线性x轴
    x, y = pdf(data, linear_bins=True)
    ind = y>0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5)

    # 双log-绘制概率密度曲线
    plot_pdf(data[data>0], ax=ax1, color='b', linewidth=2)

    ax1.set_xlabel('A')
    
    # 绘制histogram小图
    from mpl_toolkits.axes_grid.inset_locator import inset_axes
    ax1in = inset_axes(ax1, width = "30%", height = "30%", loc=3)
    ax1in.hist(data, normed=True, color='b')
    ax1in.set_xticks([])
    ax1in.set_yticks([])

    # === A ===

    # === B ===
    
    annotation = ''
    ax2 = fig.add_subplot(1,3,2, sharey=ax1)

    # 双log-绘制概率密度曲线
    print(title)
    print(pdf(data))
    print()
    plot_pdf(data, ax=ax2, color='b', linewidth=2)

    # 拟合power-law函数并绘图
    fit = Fit(data, xmin=1, discrete=True, parameter_range={'alpha':[None,None]})
    fit.power_law.plot_pdf(ax=ax2, linestyle=':', color='g')
    params1 = (fit.power_law.alpha, fit.power_law.xmin, fit.power_law.sigma)

    # alpha为拟合系数
    # xmin表示最小的x值(使不为0),此处指定为1
    # sigma为标准差
    annotation += '\':\' - alpha={:.2f}, xmin= {}, sigma={:.2f}'.format(*params1)
    # p = fit.power_law.pdf()
    
    fit = Fit(data, discrete=True, parameter_range={'alpha':[-5,10]})
    # 区别于ax2中的第一条拟合线 - 此处的xmin并非指定,而是自动计算的optimal
    fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g')
    params2 = (fit.power_law.alpha, fit.power_law.xmin, fit.power_law.sigma)
    annotation += '\n\'--\' - alpha={:.2f}, xmin= {}, sigma={:.2f}'.format(*params2)

    ax2.set_xlabel('B')
    ax2.set_ylabel(u"p(X)")# (10^n)")
    ax2.set_xlim(ax1.get_xlim())
    annotate_coord = (0.05, 0.88)
    ax2.annotate(annotation, annotate_coord, xycoords="axes fraction")
        
    # === B ===

    # === C ===

    ax3 = fig.add_subplot(1,3,3, sharey=ax1)#, sharex=ax1)#, sharey=ax2)
    plot_pdf(data[data>0], ax=ax3, color='b', linewidth=2)
    fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g')
    fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r')

    
    ax3.set_ylim(ax2.get_ylim())
    ax3.set_xlim(ax1.get_xlim())

    ax3.set_xlabel('C')

    # === C ===

    if save:
        plt.savefig(save_path)
    else:
        plt.show()

    return params1, params2
def draw(sample,
         xmin,
         xmax,
         model,
         ax=None,
         lim1=4,
         color='green',
         normalized=False):
    """
    Fits the data contained in "sample" (i.e. sizes or durations of the avalanches) with the model chosen.
    xmin : the maximum xmin that can be considered in the power law fit.
    lim1 : upper limit of the range in which to search the power law parameter
    ax = object of the type AxesSubplot (returned by fig.add_subplot())
    """
    ypred = pwl.Fit(sample,
                    xmin=(1, xmin + 1),
                    xmax=xmax,
                    parameter_range={"alpha": [1, lim1]},
                    discrete=True)

    if normalized == True:
        new = []
        for i in range(len(sample)):
            if sample[i] >= ypred.xmin:
                new.append(sample[i])

        sample = new

    if ax == None:
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)

    ns = len(pwl.pdf(sample)[0]) - 1  # == nbins + 1
    print(ns)

    ax.set_xscale('log')

    nbins = np.logspace(np.log10(min(sample)), np.log10(max(sample)), ns)
    ax.hist(sample,
            density=True,
            histtype='stepfilled',
            log=True,
            bins=nbins,
            color=color,
            alpha=0.25)
    pwl.plot_pdf(sample,
                 color='r',
                 linewidth=2,
                 label='pdf',
                 linear_bins=False)

    if model == 'power_law':
        ypred.power_law.plot_pdf(color='blue',
                                 linestyle='-',
                                 linewidth=2,
                                 label='Power Law fit')
        print(
            ypred.distribution_compare('power_law',
                                       'exponential',
                                       normalized_ratio=True))
        print('Parameters are (alpha)', ypred.power_law.alpha, 'xmin',
              ypred.power_law.xmin)
    elif model == 'lognormal':
        ypred.lognormal.plot_pdf(color='blue',
                                 linestyle='-',
                                 linewidth=2,
                                 label='Lognormal fit')
        print('Parameters are (mu,sigma)', ypred.lognormal.mu, 'and',
              ypred.lognormal.sigma)
    elif model == 'exponential':
        ypred.exponential.plot_pdf(color='blue',
                                   linestyle='-',
                                   linewidth=2,
                                   label='Exponential fit')
        print('Parameters are (lambda)', ypred.exponential.Lambda)
    elif model == 'stretched_exponential':
        ypred.stretched_exponential.plot_pdf(color='blue',
                                             linestyle='-',
                                             linewidth=2,
                                             label='Stretched_exponential fit')
        print('Parameters are (lambda,beta)',
              ypred.stretched_exponential.Lambda, 'and',
              ypred.stretched_exponential.beta)
    elif model == 'truncated_power_law':
        ypred.truncated_power_law.plot_pdf(color='blue',
                                           linestyle='-',
                                           linewidth=2,
                                           label='Truncated_power_law fit')
        print('Parameters are (alpha,lambda)', ypred.truncated_power_law.alpha,
              'and', ypred.truncated_power_law.Lambda)
    plt.legend()
Ejemplo n.º 17
0
def plot_basics(data, data_inst, fig, units):
    from powerlaw import plot_pdf, Fit, pdf
    annotate_coord = (-.4, .95)
    ax1 = fig.add_subplot(n_graphs,n_data,data_inst)
    plot_pdf(data[data>0], ax=ax1, linear_bins=True, color='r', linewidth=.5)
    x, y = pdf(data, linear_bins=True)
    ind = y>0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    ax1.scatter(x, y, color='r', s=.5)
    plot_pdf(data[data>0], ax=ax1, color='b', linewidth=2)
    from pylab import setp
    setp( ax1.get_xticklabels(), visible=False)
    #ax1.set_xticks(ax1.get_xticks()[::2])
    ax1.set_yticks(ax1.get_yticks()[::2])
    locs,labels = yticks()
    #yticks(locs, map(lambda x: "%.0f" % x, log10(locs)))
    if data_inst==1:
        ax1.annotate("A", annotate_coord, xycoords="axes fraction", fontsize=14)

    
    from mpl_toolkits.axes_grid.inset_locator import inset_axes
    ax1in = inset_axes(ax1, width = "30%", height = "30%", loc=3)
    ax1in.hist(data, normed=True, color='b')
    ax1in.set_xticks([])
    ax1in.set_yticks([])

    
    ax2 = fig.add_subplot(n_graphs,n_data,n_data+data_inst, sharex=ax1)
    plot_pdf(data, ax=ax2, color='b', linewidth=2)
    fit = Fit(data, xmin=1, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle=':', color='g')
    p = fit.power_law.pdf()
    #ax2.set_ylim(min(p), max(p))
    ax2.set_xlim(ax1.get_xlim())
    
    fit = Fit(data, discrete=True)
    fit.power_law.plot_pdf(ax=ax2, linestyle='--', color='g')
    from pylab import setp
    setp( ax2.get_xticklabels(), visible=False)
    #ax2.set_xticks(ax2.get_xticks()[::2])
    if ax2.get_ylim()[1] >1:
        ax2.set_ylim(ax2.get_ylim()[0], 1)
    
    ax2.set_yticks(ax2.get_yticks()[::2])
    #locs,labels = yticks()
    #yticks(locs, map(lambda x: "%.0f" % x, log10(locs)))
    if data_inst==1:
       ax2.annotate("B", annotate_coord, xycoords="axes fraction", fontsize=14)        
       ax2.set_ylabel(r"$p(X)$")# (10^n)")
        
    ax3 = fig.add_subplot(n_graphs,n_data,n_data*2+data_inst)#, sharex=ax1)#, sharey=ax2)
    fit.power_law.plot_pdf(ax=ax3, linestyle='--', color='g')
    fit.exponential.plot_pdf(ax=ax3, linestyle='--', color='r')
    fit.plot_pdf(ax=ax3, color='b', linewidth=2)
    
    #p = fit.power_law.pdf()
    ax3.set_ylim(ax2.get_ylim())
    ax3.set_yticks(ax3.get_yticks()[::2])
    ax3.set_xlim(ax1.get_xlim())
    
    #locs,labels = yticks()
    #yticks(locs, map(lambda x: "%.0f" % x, log10(locs)))
    if data_inst==1:
        ax3.annotate("C", annotate_coord, xycoords="axes fraction", fontsize=14)

    #if ax2.get_xlim()!=ax3.get_xlim():
    #    zoom_effect01(ax2, ax3, ax3.get_xlim()[0], ax3.get_xlim()[1])
    ax3.set_xlabel(units)
Ejemplo n.º 18
0
def build(path="../data/influence_data.csv"):
    G = create_graph()

    # print(nx.degree_histogram(G))
    deg_dist = nx.degree_histogram(G)
    # _, deg_dist = get_inout_degrees(G)

    degree = list(dict(nx.degree(G)).values())
    # degree = deg_dist
    degree = [d for d in degree if d > 0]
    plt.plot(range(0, len(degree)),
             sorted(degree, reverse=True),
             'ko',
             color='#40916c',
             alpha=0.7)
    plt.legend(['degree'])
    plt.xlabel('id')
    plt.ylabel('degree')

    plt.tight_layout()  # 去除pdf周围白边

    plt.savefig("../img/degree_distrubition.pdf")

    # plt.show()
    plt.figure()
    import powerlaw
    fit = powerlaw.Fit(degree, xmin=3, discrete=True)
    print(f'alpha: {fit.power_law.alpha}')
    print(f'x-min: {fit.power_law.xmin}')
    print(f'D: {fit.power_law.D}')
    fit.plot_pdf(color='#2d6a4f', lw=3, linestyle=':', label='curve')

    x, y = powerlaw.pdf(degree, linear_bins=True)

    ind = y > 0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    plt.scatter(x,
                y,
                color='#74c69d',
                marker='s',
                alpha=0.6,
                s=50,
                label='original degree')
    fit.power_law.plot_pdf(color='#1b4332',
                           linestyle='-',
                           label='$\gamma=1.8$',
                           lw=2)
    # fit.power_law.plot_pdf(color='#1b4332', linestyle='-',
    #                        label='$gamma=%.3f$' % fit.power_law.alpha, lw=2)
    plt.legend()
    plt.xlabel('ln(id)')
    plt.ylabel('ln(degree)')

    # plt.title(
    #     'Power Law Curve in Double Logarithmic Coordinates')
    plt.savefig("../img/powerlaw.pdf", dpi=600)
    plt.show()
    # 计算皮尔逊 指数
    # from scipy.stats import pearsonr
    # r, p = pearsonr(x, y)
    # print(f'pearsonr r: {r}, p: {p}')

    # 线性回归
    # slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
    # print(slope, intercept, r_value, p_value, std_err)

    # 分布
    # DataFitAndVisualization(X, Y)
    # plt.loglog(x, y, color="steelblue", linewidth=2)  # 在双对数坐标轴上绘制度分布曲线

    r1, p1 = fit.distribution_compare('power_law', 'exponential', nested=True)
    r2, p2 = fit.distribution_compare('power_law', 'lognormal', nested=True)
    r3, p3 = fit.distribution_compare('power_law',
                                      'truncated_power_law',
                                      nested=True)
    r4, p4 = fit.distribution_compare('power_law',
                                      'stretched_exponential',
                                      nested=True)
    print(r1, p1)
    print(r2, p2)
    print(r3, p3)
    print(r4, p4)
Ejemplo n.º 19
0
def powerFit(Gx,
             mode='power_law',
             xmin=None,
             xmax=None,
             linear=False,
             indeg=True,
             undir=False,
             units=None):
    # set-up
    pylab.rcParams['xtick.major.pad'] = '24'
    pylab.rcParams['ytick.major.pad'] = '24'
    #pylab.rcParams['font.sans-serif']='Arial'

    from matplotlib import rc
    rc('font', family='sans-serif')
    rc('font', size=14.0)
    rc('text', usetex=False)

    panel_label_font = FontProperties().copy()
    panel_label_font.set_weight("bold")
    panel_label_font.set_size(12.0)
    panel_label_font.set_family("sans-serif")

    # fit power law distribution using the powerlaw package
    try:
        if indeg == True:
            data = np.array(
                sorted([d for n, d in Gx.in_degree()], reverse=True))
        elif indeg == False and undir == False:
            data = np.array(
                sorted([d for n, d in Gx.out_degree()], reverse=True))
        elif indeg == False and undir == True:
            data = np.array(sorted([d for n, d in Gx.degree()], reverse=True))
    except:
        data = Gx
    ####
    annotate_coord = (-.4, .95)
    fig = plt.figure(figsize=(16, 8))
    linf = fig.add_subplot(1, 2, 1)
    x, y = powerlaw.pdf(data[data > 0], linear_bins=True)
    ind = y > 0
    y = y[ind]
    x = x[:-1]
    x = x[ind]
    linf.scatter(x, y, color='r', s=5.5)
    powerlaw.plot_pdf(data[data > 0],
                      color='b',
                      linewidth=2,
                      linear_bins=linear,
                      ax=linf)
    linf.annotate(" ",
                  annotate_coord,
                  xycoords="axes fraction",
                  fontproperties=panel_label_font)
    linf.set_ylabel(u"p(X)")  # (10^n)")
    linf.set_xlabel(units)

    if xmin != None and xmax == None:
        fit = powerlaw.Fit(data, discrete=True, xmin=xmin)
    elif xmax != None and xmin == None:
        fit = powerlaw.Fit(data, discrete=True, xmax=xmax)
    elif xmax != None and xmin != None:
        fit = powerlaw.Fit(data, discrete=True, xmin=xmin, xmax=xmax)
    else:
        fit = powerlaw.Fit(data, discrete=True)

    fitf = fig.add_subplot(1, 2, 2, sharey=linf)
    fitf.set_xlabel(units)
    powerlaw.plot_pdf(data, color='b', linewidth=2, ax=fitf)
    if mode == 'truncated_power_law':
        fit.truncated_power_law.plot_pdf(color='r', linestyle='--', ax=fitf)
        print('alpha = ', fit.truncated_power_law.alpha)
        print('Lambda = ', fit.truncated_power_law.Lambda)
        print('xmin,xmax = ', fit.xmin, fit.xmax)
        print('Kolmogorov-Smirnov distance = ', fit.truncated_power_law.D)
    elif mode == 'power_law':
        fit.power_law.plot_pdf(color='r', linestyle='--', ax=fitf)
        print('alpha = ', fit.power_law.alpha)
        print('sigma = ', fit.power_law.sigma)
        print('xmin,xmax = ', fit.xmin, fit.xmax)
        print('Kolmogorov-Smirnov distance = ', fit.power_law.D)
    elif mode == 'lognormal':
        fit.lognormal.plot_pdf(color='r', linestyle='--', ax=fitf)
        print('mu = ', fit.lognormal.mu)
        print('sigma = ', fit.lognormal.sigma)
        print('xmin,xmax = ', fit.xmin, fit.xmax)
        print('Kolmogorov-Smirnov distance = ', fit.lognormal.D)
    elif mode == 'lognormal_positive':
        fit.lognormal_positive.plot_pdf(color='r', linestyle='--', ax=fitf)
        print('mu = ', fit.lognormal_positive.mu)
        print('sigma = ', fit.lognormal_positive.sigma)
        print('xmin,xmax = ', fit.xmin, fit.xmax)
        print('Kolmogorov-Smirnov distance = ', fit.lognormal_positive.D)
    elif mode == 'exponential':
        fit.exponential.plot_pdf(color='r', linestyle='--', ax=fitf)
        print('Lambda = ', fit.exponential.Lambda)
        print('xmin,xmax = ', fit.xmin, fit.xmax)
        print('Kolmogorov-Smirnov distance = ', fit.exponential.D)
    elif mode == 'stretched_exponential':
        fit.stretched_exponential.plot_pdf(color='r', linestyle='--', ax=fitf)
        print('Lambda = ', fit.stretched_exponential.Lambda)
        print('beta = ', fit.stretched_exponential.beta)
        print('xmin,xmax = ', fit.xmin, fit.xmax)
        print('Kolmogorov-Smirnov distance = ', fit.stretched_exponential.D)
    else:
        fit = None
        print('mode not allowed')
    return (data, fit)
Ejemplo n.º 20
0
def main():

    G = nx.read_gexf('DBLP_graph.gexf')

    degree_sequence_min = sorted(
        [d for n, d in G.degree().iteritems() if G.node[n]['gender'] == 'f'],
        reverse=True)  # degree sequence
    degree_sequence_maj = sorted(
        [d for n, d in G.degree().iteritems() if G.node[n]['gender'] == 'm'],
        reverse=True)  # degree sequence

    maj_fraction = float(len(degree_sequence_maj)) / (
        len(degree_sequence_min) + len(degree_sequence_maj))
    #e_maj,e_min = analytic_exponent(G,maj_fraction)
    e_maj = 2.94  #measured analytically
    e_min = 3.24

    pdf_female = powerlaw.pdf(degree_sequence_min)
    x_fe = list(pdf_female[0])
    y_fe = list(pdf_female[1])
    del x_fe[-1]

    pdf_male = powerlaw.pdf(degree_sequence_maj)
    x_ma = list(pdf_male[0])
    y_ma = list(pdf_male[1])
    del x_ma[-1]

    data_min = degree_sequence_min
    plt.scatter(x_fe, y_fe, color=min_color)
    fit_min = powerlaw.Fit(data_min, xmax=60, xmin=6)
    alpha_min = fit_min.power_law.alpha

    figFIT = fit_min.power_law.plot_pdf(
        color=min_color,
        linestyle='--',
        label=r"(women) Fit: %.2f, Model: %.2f" % (alpha_min, e_min))

    data_maj = degree_sequence_maj

    plt.scatter(x_ma, y_ma, color=maj_color)
    fit_maj = powerlaw.Fit(data_maj, xmax=80, xmin=6)
    alpha_maj = fit_maj.power_law.alpha

    fit_maj.power_law.plot_pdf(color=maj_color,
                               linestyle='--',
                               label=r"(men) Fit: %.2f , Model: %.2f" %
                               (alpha_maj, e_maj))

    plt.ylim([10**(-5), 1])
    plt.xlim([1, 120])

    handles, labels = figFIT.get_legend_handles_labels()
    leg = figFIT.legend(handles, labels, loc=3)
    leg.draw_frame(False)

    figFIT.text(7, 0.2, 'B) Scientific collaboration', fontsize=24)
    figFIT.text(2, 0.01, r'$f_{min} = 0.23$', fontsize=26)

    figFIT.set_ylabel(r"$p(k)$", size=26)
    figFIT.set_xlabel(r"degree $(k)$", size=26)

    figname = 'deg_dist_DBLP_2010_scatter'
    plt.savefig(figname + '.eps', bbox_inches='tight')
    plt.savefig(figname + '.svg', bbox_inches='tight')