def model_config(self,predicate,formula,database,mln_path,db_path):
        """
        Returns the database and mln objects in MLN format
        --Inputs--
        predicate: predicate object with parsed predicates
        formula: formula object with parsed predicates
        database:.txt file containing the database(s)
        mln_path: .mln file name to save the learned weights per formula
        db_path: .db file to save the progress of the database learning
        """
        base_path = os.getcwd()
        mln = MLN(grammar='PRACGrammar',logic='FirstOrderLogic') #Parsing with PRACGrammar since we are using clusters
        for i in predicate:
            mln << i
            print('input predicate successful:'+i)
        for i in formula:
            mln << i
            print('input formula successful :'+i)

        mln.write()
        mln.tofile(base_path + '/'+ mln_path)

        db = Database.load(mln,database)
        #db.write()
        #db.tofile(base_path + '/'+ db_path)
        return (db,mln)
Ejemplo n.º 2
0
    def model_config(predicate, formula, database, mln_path,
                     db_path):  # mln_path,db_path 為string
        base_path = os.getcwd()
        mln = MLN(grammar='StandardGrammar', logic='FirstOrderLogic')
        for i in predicate:
            mln << i
            print('input predicate successful:' + i)
        for i in formula:
            mln << i
            print('input formula successful :' + i)
        mln.write()
        mln.tofile(base_path + '\\' + mln_path)  #把谓语数据储存成 mln_path.mln 档案
        db = Database(mln)
        try:
            for i in enumerate(database):
                db << i[1][1]
                print('input database successful : ' + i[1][0] + ' : ' +
                      i[1][1])
        except:
            for j in database[i[0]::]:
                db << j[1]

        db.write()
        db.tofile(base_path + '\\' + db_path)  #把证据数据储存成 db_path.db 档案
        return (db, mln)
Ejemplo n.º 3
0
def test_learning_taxonomies():
    p = '$PRACMLN_HOME/examples/taxonomies/taxonomies.pracmln'
    mln = MLN(mlnfile=('%s:senses_and_roles.mln' % p), grammar='PRACGrammar')
    mln.write()
    dbs = Database.load(mln, dbfiles='%s:training.db' % p)
    for method in ('DPLL', 'DBPLL_CG', 'DCLL'):
        for multicore in (True, False):
            print '=== LEARNING TEST:', method, '==='
            learn(method=method, mln=mln, db=dbs, verbose=True, multicore=multicore, epreds='is_a', discr_preds=EVIDENCE_PREDS).run()
Ejemplo n.º 4
0
def test_learning_smokers():
    p = '$PRACMLN_HOME/examples/smokers/smokers.pracmln'
    mln = MLN(mlnfile=('%s:smoking.mln' % p), grammar='StandardGrammar')
    mln.write()
    db = Database(mln, dbfile='%s:smoking-train.db' % p)
    for method in ('BPLL', 'BPLL_CG', 'CLL'):
        for multicore in (True, False):
            print '=== LEARNING TEST:', method, '==='
            learn(method=method, mln=mln, db=db, verbose=True, multicore=multicore).run()
Ejemplo n.º 5
0
def test_learning_smokers():
    p = os.path.join(locs.examples, 'smokers', 'smokers.pracmln')
    mln = MLN(mlnfile=('%s:smoking.mln' % p), grammar='StandardGrammar')
    mln.write()
    db = Database(mln, dbfile='%s:smoking-train.db' % p)
    for method in ('BPLL', 'BPLL_CG', 'CLL'):
        for multicore in (True, False):
            print('=== LEARNING TEST:', method, '===')
            learn(method=method,
                  mln=mln,
                  db=db,
                  verbose=True,
                  multicore=multicore).run()
Ejemplo n.º 6
0
def test_learning_taxonomies():
    p = os.path.join(locs.examples, 'taxonomies', 'taxonomies.pracmln')
    mln = MLN(mlnfile=('%s:senses_and_roles.mln' % p), grammar='PRACGrammar')
    mln.write()
    dbs = Database.load(mln, dbfiles='%s:training.db' % p)
    for method in ('DPLL', 'DBPLL_CG', 'DCLL'):
        for multicore in (True, False):
            print('=== LEARNING TEST:', method, '===')
            learn(method=method,
                  mln=mln,
                  db=dbs,
                  verbose=True,
                  multicore=multicore,
                  epreds='is_a',
                  discr_preds=EVIDENCE_PREDS).run()
Ejemplo n.º 7
0
def test_mln():
    mln = MLN()
    mln << 'foo(x)' # predicate declaration
    mln << 'bar(y)' # another pred declaration
    mln << 'bar(?x) => bar(?y).' # hard logical constraint
    mln << 'logx(.75)/log(.25) foo(?x)' # weighted formula
    print('mln write:')
    mln.write()
    print('mln predicates:')
    for pred in mln.predicates:
        print(repr(pred))
    print('mln formulas:')
    for f in mln.formulas:
        print(f)
        f.print_structure()  
    return mln 
Ejemplo n.º 8
0
def main():
    path = os.path.join('Vessel Traffic Data sub-areas April 2020',
                        'cts_sub-areas_04_2020_pt',
                        'cts_bass_st_04_2020_pt.shp')
    df = gpd.read_file(path)
    mln = MLN()
    populatePredicates(mln)
    populateFormulas(mln)
    mln.write()
    dbs = []
    for i in range(100):
        collection = df.sample(n=3)
        lons = collection['LON'].tolist()
        lats = collection['LAT'].tolist()
        points = list(zip(lons, lats))
        evidence = ThreePointEvidence(*points)
        db = Database(mln)
        evidence.generateEvidence(db)
        dbs.append(db)
    mln.learn(dbs)
Ejemplo n.º 9
0
from pracmln import MLN
from pracmln import Database
from pracmln import MLNQuery

mln = MLN(mlnfile='./data/smokers/mlns/smoking_trained.mln',grammar='PRACGrammar', logic='FirstOrderLogic')
mln.write()

db = Database.load(mln,'./data/smokers/dbs/smoking-test.db')[0]
db.write()

print("Running Query...")
result = MLNQuery(mln=mln, db=db).run()
print(result)