Ejemplo n.º 1
0
def get_alpha_beta_L0frame(M, q, chi1, chi2, times, f_ref = 20.):
	"Wrapper to precession.orbit_vectors()"
	M_sun = 4.93e-6
	
		#computing alpha, beta
	q_ = 1./q #using conventions of precession package
	m1=M/(1.+q_) # Primary mass
	m2=q_*M/(1.+q_) # Secondary mass (<m1)
	S1=chi1*m1**2 # Primary spin magnitude
	S2=chi2*m2**2 # Secondary spin magnitude
	r_0 = precession.ftor(f_ref,M)
	
	L_0 = precession.get_L(r_0, q_)
	print("q, L0, r_0 ", q_, L_0, r_0)

	r_f = 1.* M #final separation: time grid is s.t. t = 0 when r = r_f
	sep = np.linspace(r_0, r_f, 5000)

	Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z, t = precession.orbit_vectors(0,0,L_0, *S1, *S2, sep, q_, time = True)
	L = np.sqrt(Lx**2 + Ly**2 + Lz**2)
	
	alpha = np.unwrap(np.arctan2(Ly,Lx))
	beta = np.arccos(Lz/L)

	t_out = (t-t[-1])*M_sun*M #output grid
	if times is None:
		return t_out, alpha, beta
	
	return
def test():
    t0 = time.time()
    q = 0.75  # Mass ratio
    chi1 = 0.5  # Primary’s spin magnitude
    chi2 = 0.95  # Secondary’s spin magnitude
    print("Take a BH binary with q=%.2f, chi1=%.2f and ,→ chi2=%.2f" %
          (q, chi1, chi2))
    sep = numpy.logspace(10, 1, 10)  # Output separations

    t1 = numpy.pi / 3.  # Spin orientations at r_vals[0]
    t2 = 2. * numpy.pi / 3.
    dp = numpy.pi / 4.
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2)
    freq = [rtof(s, M) for s in sep]
    print(ftor(20, M))
    t1v, t2v, dpv = precession.evolve_angles(t1, t2, dp, sep, q, S1, S2)
    print("Perform BH binary inspiral")
    print("log10(r/M) \t freq(Hz) \t theta1 \t theta2 \t deltaphi")
    for r, f, t1, t2, dp in zip(numpy.log10(sep), freq, t1v, t2v, dpv):
        print("%.0f \t\t %.3f \t\t %.3f \t\t %.3f \t\t %.3f" %
              (r, f, t1, t2, dp))
    t = time.time() - t0
    print("Executed in %.3fs" % t)
Ejemplo n.º 3
0
def get_alpha_beta(q, chi1, chi2, theta1, theta2, delta_phi, times, f_ref = 20., smooth_oscillation = False, verbose = False):
	"""
get_alpha_beta
==============
	Returns angles alpha and beta by solving PN equations for spins. Uses module precession.
	Angles are evaluated on a user-given time grid (units: s/M_sun) s.t. the 0 of time is at separation r = M_tot.
	Inputs:
		q (N,)				mass ratio (>1)
		chi1 (N,)			dimensionless spin magnitude of BH 1 (in [0,1])
		chi1 (N,)			dimensionless spin magnitude of BH 2 (in [0,1])
		theta1 (N,)			angle between spin 1 and L
		theta2 (N,)			angle between spin 2 and L
		delta_phi (N,)		angle between in plane projection of the spins
		times (D,)			times at which alpha, beta are evaluated (units s/M_sun)
		f_ref				frequency at which the orbital parameters refer to (and at which the computation starts)
		smooth_oscillation	whether to smooth the oscillation and return the average part and the residuals
		verbose 			whether to suppress the output of precession package
	Outputs:
		alpha (N,D)		alpha angle evaluated at times
		beta (N,D)		beta angle evaluated at times (if not smooth_oscillation)
		beta (N,D,3)	[mean of beta angles, amplitude of the oscillating part, phase of the oscillating part] (if smooth_oscillation)
	"""
	#have a loook at precession.evolve_angles: it does exactly what we want..
	#https://github.com/dgerosa/precession/blob/precession_v1/precession/precession.py#L3043
	
	M_sun = 4.93e-6
	t_min = np.max(np.abs(times))
	r_0 = 2. * np.power(t_min/M_sun, .25) #starting point for the r integration #look eq. 4.26 Maggiore #uglyyyyy
	#print(f_ref, precession.rtof(r_0, 1.))
	#print(f_ref)
	r_0 = precession.ftor(f_ref,1)
		
	if isinstance(q,float):
		q = np.array(q)
		chi1 = np.array(chi1)
		chi2 = np.array(chi2)
		theta1 = np.array(theta1)
		theta2 = np.array(theta2)
		delta_phi = np.array(delta_phi)

	if len(set([q.shape, chi1.shape, chi2.shape, theta1.shape, theta2.shape, delta_phi.shape])) != 1:
		raise RuntimeError("Inputs are not of the same shape (N,). Unable to continue")

	if q.ndim == 0:
		q = q[None]
		chi1 = chi1[None]; chi2 = chi2[None]
		theta1 = theta1[None]; theta2 = theta2[None]; delta_phi = delta_phi[None]
		squeeze = True
	else:
		squeeze = False

		#initializing vectors
	alpha = np.zeros((q.shape[0],times.shape[0]))
	if smooth_oscillation:
		t_cutoff = -0.1 #shall I insert a cutoff here?
		beta = np.zeros((q.shape[0],times.shape[0], 3))
	else:
		beta = np.zeros((q.shape[0],times.shape[0]))
	
	if not verbose:
		devnull = open(os.devnull, "w")
		old_stdout = sys.stdout
		sys.stdout = devnull
	else:
		old_stdout = sys.stdout

		#computing alpha, beta
	for i in range(q.shape[0]):
			#computing initial conditions for the time evolution
		q_ = 1./q[i] #using conventions of precession package
		M,m1,m2,S1,S2=precession.get_fixed(q_,chi1[i],chi2[i]) #M_tot is always set to 1

		#print(q_, chi1[i], chi2[i], theta1[i],theta2[i], delta_phi[i], S1, S2, M)
			#nice low level os thing
		print("Generated angle "+str(i)+"\n")
		#old_stdout.write("Generated angle "+str(i)+"\n")
		#old_stdout.flush()
		if np.abs(delta_phi[i]) < 1e-6:#delta Phi cannot be zero(for some reason)
			delta_phi[i] = 1e-6
			
		xi,J, S = precession.from_the_angles(theta1[i],theta2[i], delta_phi[i], q_, S1,S2, r_0) 

		J_vec,L_vec,S1_vec,S2_vec,S_vec = precession.Jframe_projection(xi, S, J, q_, S1, S2, r_0) #initial conditions given angles

		r_f = 1.* M #final separation: time grid is s.t. t = 0 when r = r_f
		sep = np.linspace(r_0, r_f, 5000)

		Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z, t = precession.orbit_vectors(*L_vec, *S1_vec, *S2_vec, sep, q_, time = True) #time evolution of L, S1, S2
		L = np.sqrt(Lx**2 + Ly**2 + Lz**2)
		
		print(Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z, t)
		#quit()
		
			#cos(beta(t)) = L(t).(0,0,1) #this is how I currently do!
			#cos(beta(t)) = L(t).L_vect #this is the convention that I want
		temp_alpha = np.unwrap(np.arctan2(Ly,Lx))
		temp_beta = np.arccos(Lz/L)
		
			#computing beta in the other reference frame
		L_0 = L_vec /np.linalg.norm(L_vec)
		L_t = (np.column_stack([Lx,Ly,Lz]).T/L).T #(D,3)
		temp_beta = np.einsum('ij,j->i', L_t, L_0) #cos beta
		print(L_t.shape, temp_beta.shape, L_vec)
		
		temp_beta = np.arccos(temp_beta)


		t_out = (t-t[-1])*M_sun #output grid
		print("\n\nTimes!! ",t_out[0], times[0])
		ids = np.where(t_out > np.min(times))[0]
		t_out = t_out[ids]
		temp_alpha = temp_alpha[ids]
		temp_beta = temp_beta[ids]
		
		alpha[i,:] = np.interp(times, t_out, temp_alpha)
		if not smooth_oscillation:
			#plt.plot(t_out,temp_beta)
			#plt.show()
			beta[i,:] = np.interp(times, t_out, temp_beta)
		if smooth_oscillation:
			#mean, f_min, f_max = get_spline_mean(t_out, temp_beta[None,:], f_minmax = True)
			s = smoothener(t_out, temp_beta)
			#beta[i,:,0] = mean(times) #avg beta
			beta[i,:,0] = s(times)
			#beta[i,:,1] = np.interp(times, t_out, temp_beta) - mean(times) #residuals of beta

				#dealing with amplitude and phase
			residual = (temp_beta - s(t_out))
			if np.mean(np.abs(residual))< 0.001:
				residual[:] = 0
			id_cutoff = np.where(t_out>t_cutoff)[0]
			not_id_cutoff = np.where(t_out<=t_cutoff)[0]
			residual[id_cutoff] = 0.
			
			
			m_list, M_list = compute_spline_peaks(t_out, residual[None,:])
			amp = lambda t: (M_list[0](t) - m_list[0](t))/2.
			beta[i,:,1] = amp(times) #amplitude
			temp_ph = residual / (amp(t_out)+1e-30)
			temp_ph[id_cutoff] = 0.
			beta[i,:,2] = np.interp(times, t_out, temp_ph) #phase
			beta[i,np.where(np.abs(beta[i,:,2])>1)[0],2] = np.sign(beta[i,np.where(np.abs(beta[i,:,2])>1)[0],2])
			
				#plotting
			if False:# np.max(np.abs(temp_beta-s(t_out))) > 2: #DEBUG
				plt.figure()
				plt.title("Alpha")
				plt.plot(times,alpha[i,:])

				plt.figure()			
				plt.title("Mean maxmin")
				plt.plot(times,beta[i,:,0])
				plt.plot(t_out,temp_beta)
				
				#plt.figure()
				#plt.title("Mean grad")
				#plt.plot(t_out, temp_beta)
				#plt.plot(t_out, mean_grad[0](t_out))
				
				#plt.figure()
				#plt.title("Gradient")
				#plt.plot(t_out,np.gradient(temp_beta, t_out))
				#plt.ylim([-0.6,0.6])
				
				plt.figure()
				plt.title("Amplitude")
				#plt.plot(t_out, amp(t_out))
				plt.plot(times, beta[i,:,1])
				plt.plot(t_out,np.squeeze(temp_beta - s(t_out) ))
				
				#plt.figure()
				#plt.plot(times,beta[i,:,1])
				
				plt.figure()
				plt.title("ph")
				plt.plot(times,beta[i,:,2])
				plt.show()
	
	if not verbose:
		sys.stdout = old_stdout
		devnull.close()

	if squeeze:
		return np.squeeze(alpha), np.squeeze(beta)

	return alpha, beta
Ejemplo n.º 4
0
def get_alpha_beta_M(M, q, chi1, chi2, theta1, theta2, delta_phi, f_ref = 20., smooth_oscillation = False, verbose = False):
	"""
get_alpha_beta
==============
	Returns angles alpha and beta by solving PN equations for spins. Uses module precession.
	Angles are evaluated on a user-given time grid (units: s/M_sun) s.t. the 0 of time is at separation r = M_tot.
	Inputs:
		M (N,)				total mass
		q (N,)				mass ratio (>1)
		chi1 (N,)			dimensionless spin magnitude of BH 1 (in [0,1])
		chi1 (N,)			dimensionless spin magnitude of BH 2 (in [0,1])
		theta1 (N,)			angle between spin 1 and L
		theta2 (N,)			angle between spin 2 and L
		delta_phi (N,)		angle between in plane projection of the spins
		f_ref				frequency at which the orbital parameters refer to (and at which the computation starts)
		verbose 			whether to suppress the output of precession package
	Outputs:
		times (D,)		times at which alpha, beta are evaluated (units s)
		alpha (N,D)		alpha angle evaluated at times
		beta (N,D)		beta angle evaluated at times (if not smooth_oscillation)
	"""
	M_sun = 4.93e-6
	
	if isinstance(q,np.ndarray):
		q = q[0]
		chi1 = chi1[0]
		chi2 = chi2[0]
		theta1 = theta1[0]
		theta2 = theta2[0]
		delta_phi = delta_phi[0]

		#initializing vectors
	if not verbose:
		devnull = open(os.devnull, "w")
		old_stdout = sys.stdout
		sys.stdout = devnull
	else:
		old_stdout = sys.stdout

		#computing alpha, beta
	q_ = 1./q #using conventions of precession package
	m1=M/(1.+q_) # Primary mass
	m2=q_*M/(1.+q_) # Secondary mass
	S1=chi1*m1**2 # Primary spin magnitude
	S2=chi2*m2**2 # Secondary spin magnitude
	r_0 = precession.ftor(f_ref,M)
	
	xi,J, S = precession.from_the_angles(theta1,theta2, delta_phi, q_, S1,S2, r_0)
		
	J_vec,L_vec,S1_vec,S2_vec,S_vec = precession.Jframe_projection(xi, S, J, q_, S1, S2, r_0) #initial conditions given angles

	r_f = 1.* M #final separation: time grid is s.t. t = 0 when r = r_f
	sep = np.linspace(r_0, r_f, 5000)

	Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z, t = precession.orbit_vectors(*L_vec, *S1_vec, *S2_vec, sep, q_, time = True) #time evolution of L, S1, S2
	L = np.sqrt(Lx**2 + Ly**2 + Lz**2)

	L_0 = np.array([Lx[0], Ly[0], Lz[0]])/L[0]

		#in L0 frame
	Ln = (np.array([Lx, Ly, Lz])/L).T
	L0_y = np.array([1.,0.,0.])
	L0_y = L0_y - np.dot(L0_y,L_0) * L_0
	L0_x = np.cross(L0_y,L_0)

	alpha = np.unwrap(np.arctan2(np.dot(Ln,L0_y),np.dot(Ln,L0_x)))
	beta = np.arccos(np.dot(Ln,L_0))
	
		#in J frame
	#alpha = np.unwrap(np.arctan2(Ly,Lx))
	#beta = np.arccos(Lz/L)

	t_out = (t-t[-1])*M_sun*M #output grid
		
	if not verbose:
		sys.stdout = old_stdout
		devnull.close()

	return t_out, alpha, beta
        return prec_avg_tilt_comp(**params)


def test():
    t0 = time.time()
    q = 0.75  # Mass ratio
    chi1 = 0.5  # Primary’s spin magnitude
    chi2 = 0.95  # Secondary’s spin magnitude
    print("Take a BH binary with q=%.2f, chi1=%.2f and ,→ chi2=%.2f" %
          (q, chi1, chi2))
    sep = numpy.logspace(10, 1, 10)  # Output separations

    t1 = numpy.pi / 3.  # Spin orientations at r_vals[0]
    t2 = 2. * numpy.pi / 3.
    dp = numpy.pi / 4.
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2)
    freq = [rtof(s, M) for s in sep]
    print(ftor(20, M))
    t1v, t2v, dpv = precession.evolve_angles(t1, t2, dp, sep, q, S1, S2)
    print("Perform BH binary inspiral")
    print("log10(r/M) \t freq(Hz) \t theta1 \t theta2 \t deltaphi")
    for r, f, t1, t2, dp in zip(numpy.log10(sep), freq, t1v, t2v, dpv):
        print("%.0f \t\t %.3f \t\t %.3f \t\t %.3f \t\t %.3f" %
              (r, f, t1, t2, dp))
    t = time.time() - t0
    print("Executed in %.3fs" % t)


if __name__ == '__main__':
    print(ftor(0.001, 40))