def train_test( model, optimizer, scheduler, dataloader, number_of_epochs, break_point, saving_epoch, folder_name, batch_size, infr, start_epoch, mean_best, visualize, ): global positive_count, negative_count #### Creating the folder where the results would be stored########## try: os.mkdir(folder_name) except OSError as exc: if exc.errno != errno.EEXIST: raise pass file_name = folder_name + '/' + 'result.pickle' #################################################################### loss_epoch_train = [] loss_epoch_val = [] loss_epoch_test = [] initial_time = time.time() result = [] lst_feat_vis = [] lst_feat_int = [] lst_feat_grp = [] lst_feat_att = [] lst_label = [] # #### Freeing out the cache memories from gpus and declaring the phases###### torch.cuda.empty_cache() phases = ['train', 'val', 'test'] if infr == 't' and visualize == 'f': # ## If running from a pretrained model only for saving best result ###### start_epoch = start_epoch - 1 phases = ['test'] end_of_epochs = start_epoch + 1 print('Only doing testing for storing result from a model') elif visualize != 'f': if visualize not in phases: print( 'ERROR! Asked to show result from a unknown set.The choice should be among train,val,test' ) return else: phases = [visualize] end_of_epochs = start_epoch + 1 print('Only showing predictions from a model') else: end_of_epochs = start_epoch + number_of_epochs # #### Starting the Epochs############# #----Save seed model------------------------- save_checkpoint( { 'epoch': 'seed', 'state_dict': model.state_dict(), 'mean_best': mean_best, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), }, filename=folder_name + '/' + 'seed_' + 'checkpoint.pth.tar') #-------------------------------------------- for epoch in range(start_epoch, end_of_epochs): scheduler.step() print('Epoch {}/{}'.format(epoch + 1, end_of_epochs)) print('-' * 10) print('Lr: {}'.format(scheduler.get_lr())) initial_time_epoch = time.time() for phase in phases: if phase == 'train': model.train() elif phase == 'val': model.train() else: model.eval() print('In {}'.format(phase)) detections_train = [] detections_val = [] detections_test = [] true_scores_class = np.ones([1, 80], dtype=int) true_scores = np.ones([1, 29], dtype=int) true_scores_single = np.ones([1, 1], dtype=int) predicted_scores = np.ones([1, 29], dtype=float) predicted_scores_single = np.ones([1, 1], dtype=float) predicted_scores_class = np.ones([1, 80], dtype=float) acc_epoch = 0 iteration = 1 torch.cuda.empty_cache() # ###Starting the iterations################## for (iterr, i) in enumerate(tqdm(dataloader[phase])): if iterr % 20 == 0: torch.cuda.empty_cache() inputs = i[0].to(device) labels = i[1].to(device) labels_single = i[2].to(device) image_id = i[3] pairs_info = i[4] ambiguity_score = i[5] class_dist = i[6] class_bias = i[7] minbatch_size = len(pairs_info) optimizer.zero_grad() if phase == 'train': nav = torch.tensor([[0, epoch]] * minbatch_size).to(device) elif phase == 'val': nav = torch.tensor([[1, epoch]] * minbatch_size).to(device) else: nav = torch.tensor([[2, epoch]] * minbatch_size).to(device) # import pdb;pdb.set_trace()........ true = labels.data.cpu().numpy() true_single = labels_single.data.cpu().numpy() with torch.set_grad_enabled(phase == 'train' or phase == 'val'): model_out = model( inputs, pairs_info, pairs_info, image_id, nav, phase, ) outputs = model_out[0] outputs_single = model_out[1] outputs_combine = model_out[2] outputs_gem = model_out[3] # if infr == 't' and phase == 'test': # if phase == 'train' or phase == 'val': # # out_feat_vis = model_out[4].cpu().numpy() # # out_feat_int = model_out[5].cpu().numpy() # # out_feat_grp = model_out[6].cpu().numpy() # # out_feat_att = model_out[7].cpu().numpy() # out_labels = labels.cpu().numpy() # elim_label = labels.sum(1).cpu().numpy() # elim_idx = np.where(elim_label==0)[0] # # out_feat_vis = np.delete(out_feat_vis, elim_idx, axis=0) # # out_feat_int = np.delete(out_feat_int, elim_idx, axis=0) # # out_feat_grp = np.delete(out_feat_grp, elim_idx, axis=0) # # out_feat_att = np.delete(out_feat_att, elim_idx, axis=0) # out_label = np.delete(out_labels, elim_idx, axis=0) # # lst_feat_vis.append(out_feat_vis) # # lst_feat_int.append(out_feat_int) # # lst_feat_grp.append(out_feat_grp) # # lst_feat_att.append(out_feat_att) # lst_label.append(out_label) # print(len(lst_label)) # outputs_pose=model_out[7] predicted_HOI = sigmoid(outputs).data.cpu().numpy() predicted_HOI_combine = \ sigmoid(outputs_combine).data.cpu().numpy() predicted_single = \ sigmoid(outputs_single).data.cpu().numpy() predicted_gem = \ sigmoid(outputs_gem).data.cpu().numpy() predicted_HOI_pair = predicted_HOI # predicted_HOI_pose=sigmoid(outputs_pose).data.cpu().numpy() start_index = 0 start_obj = 0 start_pers = 0 start_tot = 0 pers_index = 1 persons_score_extended = np.zeros([1, 1]) objects_score_extended = np.zeros([1, 1]) class_ids_extended = np.zeros([1, 1]) persons_np_extended = np.zeros([1, 4]) objects_np_extended = np.zeros([1, 4]) start_no_obj = 0 class_ids_total = [] # ############ Extending Person and Object Boxes and confidence scores to Multiply with all Pairs########## for batch in range(len(pairs_info)): persons_score = [] objects_score = [] class_ids = [] objects_score.append(float(1)) this_image = int(image_id[batch]) scores_total = \ helpers_pre.get_compact_detections(this_image, phase) (persons_score, objects_score, persons_np, objects_np, class_ids) = \ (scores_total['person_bbx_score'], scores_total['objects_bbx_score'], scores_total['person_bbx'], scores_total['objects_bbx'], scores_total['class_id_objects']) temp_scores = \ extend(np.array(persons_score).reshape(len(persons_score), 1), int(pairs_info[batch][1])) persons_score_extended = \ np.concatenate([persons_score_extended, temp_scores]) temp_scores = extend(persons_np, int(pairs_info[batch][1])) persons_np_extended = \ np.concatenate([persons_np_extended, temp_scores]) temp_scores = \ extend_object(np.array(objects_score).reshape(len(objects_score), 1), int(pairs_info[batch][0])) objects_score_extended = \ np.concatenate([objects_score_extended, temp_scores]) temp_scores = extend_object(objects_np, int(pairs_info[batch][0])) objects_np_extended = \ np.concatenate([objects_np_extended, temp_scores]) temp_scores = \ extend_object(np.array(class_ids).reshape(len(class_ids), 1), int(pairs_info[batch][0])) class_ids_extended = \ np.concatenate([class_ids_extended, temp_scores]) class_ids_total.append(class_ids) start_pers = start_pers \ + int(pairs_info[batch][0]) start_obj = start_obj \ + int(pairs_info[batch][1]) start_tot = start_tot \ + int(pairs_info[batch][1]) \ * int(pairs_info[batch][0]) # ################################################################################################################## # ### Applying LIS####### persons_score_extended = \ LIS(persons_score_extended, 8.3, 12, 10) objects_score_extended = \ LIS(objects_score_extended, 8.3, 12, 10) # ################################# # #### Multiplying the score from different streams along with the prior function from ican########## predicted_HOI = predicted_HOI \ * predicted_HOI_combine * predicted_single \ * predicted_gem * objects_score_extended[1:] \ * persons_score_extended[1:] loss_mask = \ prior.apply_prior(class_ids_extended[1:], predicted_HOI) predicted_HOI = loss_mask * predicted_HOI # ### Calculating Loss############ N_b = minbatch_size * 29 # *int(total_elements[0])#*29 #pairs_info[1]*pairs_info[2]*pairs_info[3] hum_obj_mask = \ torch.Tensor(objects_score_extended[1:] * persons_score_extended[1:] * loss_mask).cuda() # if epoch < 12: # lossf = torch.sum(loss_com_combine(sigmoid(outputs) # * sigmoid(outputs_combine) # * sigmoid(outputs_single) * hum_obj_mask # * sigmoid(outputs_gem), labels.float())) \ # / N_b #----------------Modified Loss--------------------------------- # Binary Cross Entropy # else: # lossf = torch.sum( # loss_com_balanced( # {'outputs':outputs, 'outputs_combine':outputs_combine, # 'outputs_single':outputs_single, 'outputs_gem':outputs_gem, # 'hum_obj_mask':hum_obj_mask}, # labels.float(), # ambiguity_score, # class_dist, # class_bias)) \ # / N_b # Focal Loss lossf = torch.sum(loss_com_focal_balanced(sigmoid(outputs) * sigmoid(outputs_combine) * sigmoid(outputs_single) * hum_obj_mask * sigmoid(outputs_gem), labels.float())) \ / N_b #-------------------------------------------------------------- lossc = lossf.item() acc_epoch += lossc iteration += 1 if phase == 'train' or phase == 'val': # ### Flowing the loss backwards######### lossf.backward() optimizer.step() # ########################################################## del lossf del model_out del inputs del outputs del labels del labels_single del ambiguity_score del class_dist del class_bias # ###### If we want to do Visualization#########.... if visualize != 'f': viss.visual( image_id, phase, pairs_info, predicted_HOI, predicted_single, objects_score_extended[1:], persons_score_extended[1:], predicted_HOI_combine, predicted_HOI_pair, true, ) # #################################################################### # #### Preparing for Storing Results##########.... predicted_scores = np.concatenate( (predicted_scores, predicted_HOI), axis=0) true_scores = np.concatenate((true_scores, true), axis=0) predicted_scores_single = \ np.concatenate((predicted_scores_single, predicted_single), axis=0) true_scores_single = \ np.concatenate((true_scores_single, true_single), axis=0) # ############################################ # ### Storing the result in V-COCO Format########## if phase == 'test': if (epoch + 1) % saving_epoch == 0 or infr == 't': all_scores = filtering( predicted_HOI, true, persons_np_extended[1:], objects_np_extended[1:], predicted_single, pairs_info, image_id, ) # prep.infer_format(image_id,all_scores,phase,detections_test,pairs_info) proper.infer_format(image_id, all_scores, phase, detections_test, pairs_info) # #####################################################........ # # Breaking in particular number of epoch#### if iteration == break_point + 1: break # ############################################ if phase == 'train': loss_epoch_train.append(acc_epoch) (AP, AP_single) = ap.class_AP(predicted_scores[1:, :], true_scores[1:, :], predicted_scores_single[1:], true_scores_single[1:]) AP_train = pd.DataFrame(AP, columns=['Name_TRAIN', 'Score_TRAIN']) AP_train_single = pd.DataFrame( AP_single, columns=['Name_TRAIN', 'Score_TRAIN']) elif phase == 'val': loss_epoch_val.append(acc_epoch) (AP, AP_single) = ap.class_AP(predicted_scores[1:, :], true_scores[1:, :], predicted_scores_single[1:], true_scores_single[1:]) AP_val = pd.DataFrame(AP, columns=['Name_VAL', 'Score_VAL']) AP_val_single = pd.DataFrame(AP_single, columns=['Name_VAL', 'Score_VAL']) elif phase == 'test': loss_epoch_test.append(acc_epoch) (AP, AP_single) = ap.class_AP(predicted_scores[1:, :], true_scores[1:, :], predicted_scores_single[1:], true_scores_single[1:]) AP_test = pd.DataFrame(AP, columns=['Name_TEST', 'Score_TEST']) AP_test_single = pd.DataFrame( AP_single, columns=['Name_TEST', 'Score_TEST']) if (epoch + 1) % saving_epoch == 0 or infr == 't': file_name_p = folder_name + '/' \ + 'test{}.pickle'.format(epoch + 1) with open(file_name_p, 'wb') as handle: pickle.dump(detections_test, handle) # Save feature # if infr == 't' and phase == 'test': # np.save(folder_name+'/feat_vis', np.vstack(lst_feat_vis)) # np.save(folder_name+'/feat_int', np.vstack(lst_feat_int)) # np.save(folder_name+'/feat_grp', np.vstack(lst_feat_grp)) # np.save(folder_name+'/feat_att', np.vstack(lst_feat_att)) # np.save(folder_name+'/labels_train', np.vstack(lst_label)) # print('Saved.') # ##### Saving the Model########### mean = AP_test.to_records(index=False)[29][1] # ###Best Model###### if mean > mean_best and infr != 't': mean_best = mean save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'mean_best': mean_best, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), }, filename=folder_name + '/' + 'bestcheckpoint.pth.tar') # ############################## if (epoch + 1) % saving_epoch == 0 and infr != 't': save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'mean_best': mean_best, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), }, filename=folder_name + '/' + str(epoch + 1) + 'checkpoint.pth.tar') # #################################### if infr == 't': AP_final = pd.concat([AP_test], axis=1) AP_final_single = pd.concat([AP_test_single], axis=1) result.append(AP_final) else: AP_final = pd.concat([AP_train, AP_val, AP_test], axis=1) AP_final_single = pd.concat( [AP_train_single, AP_val_single, AP_test_single], axis=1) # #### This file will store each epoch result in a pickle format#### with open(file_name, 'wb') as handle: pickle.dump(result, handle) time_elapsed = time.time() - initial_time_epoch print('APs in EPOCH:{}'.format(epoch + 1)) print(AP_final) print(AP_final_single) try: print('Loss_train:{},Loss_validation:{},Loss_test:{}'.format( loss_epoch_train[epoch - start_epoch], loss_epoch_val[epoch - start_epoch], loss_epoch_test[epoch - start_epoch])) except: print('Loss_test:{}'.format(loss_epoch_test[epoch - start_epoch])) print('This epoch completes in {:.0f}m {:.06f}s'.format( time_elapsed // 60, time_elapsed % 60)) if infr == 't': break time_elapsed = time.time() - initial_time print('The whole process runs for {:.0f}h {:.0f}m {:0f}s'.format( time_elapsed // 3600, time_elapsed % 3600 // 60, time_elapsed % 3600 % 60 % 60)) return
def train_test(model, optimizer, scheduler, dataloader, number_of_epochs, break_point, saving_epoch, folder_name, batch_size, infr, start_epoch, mean_best, visualize): #### Creating the folder where the results would be stored########## try: os.mkdir(folder_name) except OSError as exc: if exc.errno != errno.EEXIST: raise pass file_name = folder_name + '/' + 'result.pickle' #################################################################### loss_epoch_train = [] loss_epoch_val = [] loss_epoch_test = [] initial_time = time.time() result = [] ##### Freeing out the cache memories from gpus and declaring the phases###### torch.cuda.empty_cache() phases = ['train', 'test'] if infr == 't' and visualize == 'f': ### If running from a pretrained model only for saving best result ###### start_epoch = start_epoch - 1 phases = ['test'] end_of_epochs = start_epoch + 1 print('Only doing testing for storing result from a model') elif visualize != 'f': if visualize not in phases: print( "ERROR! Asked to show result from a unknown set.The choice should be among train,val,test" ) return else: phases = [visualize] end_of_epochs = start_epoch + 1 print('Only showing predictions from a model') else: end_of_epochs = start_epoch + number_of_epochs ##### Starting the Epochs############# for epoch in range(start_epoch, end_of_epochs): scheduler.step() print('Epoch {}/{}'.format(epoch + 1, end_of_epochs)) print('-' * 10) # print('Lr: {}'.format(scheduler.get_lr())) initial_time_epoch = time.time() for phase in phases: if phase == 'train': model.train() else: model.eval() print('In {}'.format(phase)) detections_train = {} detections_test = {} true_scores_class = np.ones([1, 80], dtype=int) true_scores = np.ones([1, no_of_classes], dtype=int) true_scores_single = np.ones([1, 1], dtype=int) predicted_scores = np.ones([1, no_of_classes], dtype=float) predicted_scores_single = np.ones([1, 1], dtype=float) predicted_scores_class = np.ones([1, 80], dtype=float) acc_epoch = 0 iteration = 1 torch.cuda.empty_cache() ####Starting the iterations################## for iterr, i in enumerate(tqdm(dataloader[phase])): if iterr % 20 == 0: torch.cuda.empty_cache() inputs = i[0].to(device) labels = i[1].to(device) labels_single = i[2].to(device) image_id = i[3] pairs_info = i[4] minbatch_size = len(pairs_info) optimizer.zero_grad() if phase == 'train': nav = torch.tensor([[0, epoch]] * minbatch_size).to(device) else: nav = torch.tensor([[2, epoch]] * minbatch_size).to(device) # import pdb;pdb.set_trace() true = (labels.data).cpu().numpy() true_single = (labels_single.data).cpu().numpy() with torch.set_grad_enabled(phase == 'train' or phase == 'val'): model_out = model(inputs, pairs_info, pairs_info, image_id, nav, phase) #import pdb; pdb.set_trace() outputs = model_out[0] outputs_single = model_out[1] outputs_combine = model_out[2] outputs_gem = model_out[3] predicted_HOI = sigmoid(outputs).data.cpu().numpy() predicted_HOI_combine = sigmoid( outputs_combine).data.cpu().numpy() predicted_single = sigmoid( outputs_single).data.cpu().numpy() predicted_gem = sigmoid(outputs_gem).data.cpu().numpy() predicted_HOI_pair = predicted_HOI start_index = 0 start_obj = 0 start_pers = 0 start_tot = 0 pers_index = 1 persons_score_extended = np.zeros([1, 1]) objects_score_extended = np.zeros([1, 1]) class_ids_extended = np.zeros([1, 1]) persons_np_extended = np.zeros([1, 4]) objects_np_extended = np.zeros([1, 4]) start_no_obj = 0 class_ids_total = [] ############# Extending Person and Object Boxes and confidence scores to Multiply with all Pairs########## for batch in range(len(pairs_info)): persons_score = [] objects_score = [] class_ids = [] objects_score.append(float(1)) this_image = int(image_id[batch]) scores_total = helpers_pre.get_compact_detections( this_image, phase) persons_score, objects_score, persons_np, objects_np, class_ids = scores_total[ 'person_bbx_score'], \ scores_total[ 'objects_bbx_score'], \ scores_total['person_bbx'], \ scores_total['objects_bbx'], \ scores_total[ 'class_id_objects'] temp_scores = extend( np.array(persons_score).reshape( len(persons_score), 1), int(pairs_info[batch][1])) persons_score_extended = np.concatenate( [persons_score_extended, temp_scores]) temp_scores = extend(persons_np, int(pairs_info[batch][1])) persons_np_extended = np.concatenate( [persons_np_extended, temp_scores]) temp_scores = extend_object( np.array(objects_score).reshape( len(objects_score), 1), int(pairs_info[batch][0])) objects_score_extended = np.concatenate( [objects_score_extended, temp_scores]) temp_scores = extend_object(objects_np, int(pairs_info[batch][0])) objects_np_extended = np.concatenate( [objects_np_extended, temp_scores]) temp_scores = extend_object( np.array(class_ids).reshape(len(class_ids), 1), int(pairs_info[batch][0])) class_ids_extended = np.concatenate( [class_ids_extended, temp_scores]) class_ids_total.append(class_ids) start_pers = start_pers + int(pairs_info[batch][0]) start_obj = start_obj + int(pairs_info[batch][1]) start_tot = start_tot + int( pairs_info[batch][1]) * int(pairs_info[batch][0]) ################################################################################################################### #### Applying LIS####### persons_score_extended = LIS(persons_score_extended, 8.3, 12, 10) objects_score_extended = LIS(objects_score_extended, 8.3, 12, 10) ################################## predicted_HOI = predicted_HOI * predicted_HOI_combine * predicted_single * predicted_gem * objects_score_extended[ 1:] * persons_score_extended[1:] index_mask = class_ids_extended[1:].reshape( len(class_ids_extended[1:]), ).astype('int32') loss_mask, count_weight = mask_t[index_mask], count_t[ index_mask] predicted_HOI = loss_mask * predicted_HOI #### Calculating Loss############ N_b = minbatch_size * no_of_classes # *int(total_elements[0])#*no_of_classes #pairs_info[1]*pairs_info[2]*pairs_info[3] hum_obj_mask = torch.Tensor(objects_score_extended[1:] * persons_score_extended[1:] * loss_mask).cuda() lossf = torch.sum( loss_com_combine( sigmoid(outputs) * sigmoid(outputs_combine) * sigmoid(outputs_single) * hum_obj_mask * sigmoid(outputs_gem), labels.float())) / N_b lossc = lossf.item() acc_epoch += lossc iteration += 1 if phase == 'train' or phase == 'val': #### Flowing the loss backwards######### lossf.backward() optimizer.step() ########################################################### del lossf del model_out del inputs del outputs del labels ####### If we want to do Visualization######### if visualize != 'f': viss.visual(image_id, phase, pairs_info, predicted_HOI, predicted_single, objects_score_extended[1:], persons_score_extended[1:], predicted_HOI_combine, predicted_HOI_pair, true) ##################################################################### ##### Preparing for Storing Results########## predicted_scores = np.concatenate( (predicted_scores, predicted_HOI), axis=0) true_scores = np.concatenate((true_scores, true), axis=0) predicted_scores_single = np.concatenate( (predicted_scores_single, predicted_single), axis=0) true_scores_single = np.concatenate( (true_scores_single, true_single), axis=0) ############################################# #### Storing the result in V-COCO Format########## if phase == 'test': if (epoch + 1) % saving_epoch == 0 or infr == 't': all_scores = filtering(predicted_HOI, true, persons_np_extended[1:], objects_np_extended[1:], predicted_single, pairs_info, image_id, class_ids_extended[1:]) # prep.infer_format(image_id,all_scores,phase,detections_test,pairs_info) proper.infer_format(image_id, all_scores, phase, detections_test, pairs_info) ###################################################### ## Breaking in particular number of epoch#### if iteration == break_point + 1: break ############################################# if phase == 'train': loss_epoch_train.append((acc_epoch)) AP, AP_single = ap.class_AP(predicted_scores[1:, :], true_scores[1:, :], predicted_scores_single[1:, ], true_scores_single[1:, ]) AP_train = pd.DataFrame(AP, columns=['Name_TRAIN', 'Score_TRAIN']) AP_train_single = pd.DataFrame( AP_single, columns=['Name_TRAIN', 'Score_TRAIN']) elif phase == 'test': loss_epoch_test.append((acc_epoch)) AP, AP_single = ap.class_AP(predicted_scores[1:, :], true_scores[1:, :], predicted_scores_single[1:, ], true_scores_single[1:, ]) AP_test = pd.DataFrame(AP, columns=['Name_TEST', 'Score_TEST']) AP_test_single = pd.DataFrame( AP_single, columns=['Name_TEST', 'Score_TEST']) if (epoch + 1) % saving_epoch == 0 or infr == 't': file_name_p = folder_name + '/' + 'test.pickle'.format( epoch + 1) with open(file_name_p, 'wb') as handle: pickle.dump(detections_test, handle) ###### Saving the Model########### mean = AP_test.to_records(index=False)[no_of_classes][1] ####Best Model###### if mean > mean_best and infr != 't': mean_best = mean save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'mean_best': mean_best, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, filename=folder_name + '/' + 'bestcheckpoint.pth.tar') ############################### if (epoch + 1) % saving_epoch == 0 and infr != 't': save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'mean_best': mean_best, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, filename=folder_name + '/' + str(epoch + 1) + 'checkpoint.pth.tar') ##################################### if infr == 't': AP_final = pd.concat([AP_test], axis=1) AP_final_single = pd.concat([AP_test_single], axis=1) result.append(AP_final) else: AP_final = pd.concat([AP_train, AP_test], axis=1) AP_final_single = pd.concat([AP_train_single, AP_test_single], axis=1) ##### This file will store each epoch result in a pickle format#### with open(file_name, 'wb') as handle: pickle.dump(result, handle) time_elapsed = time.time() - initial_time_epoch print('APs in EPOCH:{}'.format(epoch + 1)) print(AP_final) print(AP_final_single) #post_test.send_message_to_slack(AP_final) #post_test.send_message_to_slack(AP_final_single) try: print('Loss_train:{},Loss_test:{}'.format( loss_epoch_train[epoch - start_epoch], loss_epoch_test[epoch - start_epoch])) #post_test.send_message_to_slack('Loss_train:{},Loss_test:{}'.format(loss_epoch_train[epoch - start_epoch], # loss_epoch_test[epoch - start_epoch])) except: print('Loss_test:{}'.format(loss_epoch_test[epoch - start_epoch])) print('This epoch completes in {:.0f}m {:.06f}s'.format( time_elapsed // 60, time_elapsed % 60)) if infr == 't': break time_elapsed = time.time() - initial_time print('The whole process runs for {:.0f}h {:.0f}m {:0f}s'.format( time_elapsed // 3600, (time_elapsed % 3600) // 60, ((time_elapsed % 3600) % 60) % 60)) return