Ejemplo n.º 1
0
def run_model(text):
    '''
	run the model on given text
	'''
    model_path = settings.model_path
    dictionary_path = settings.dictionary_path
    pp = Predict(model_path, dictionary_path)
    results = pp.run(text)
    return results
def main(argv):

    # get base & to_diff filenames
    base_file, diff_file = get_filenames(argv)

    # get doc-readers for the 2 files...
    base_doc = DOCReader(base_file)
    diff_doc = DOCReader(diff_file)

    # process the sections into hash
    base_doc_sections_map = {}
    diff_doc_sections_map = {}

    for para in base_doc.sections:
        para = para.strip()
        k = (para[:11]).strip()
        base_doc_sections_map[k] = para

    for para in diff_doc.sections:
        para = para.strip()
        k = (para[:11]).strip()
        diff_doc_sections_map[k] = para

    # IMP BITs...
    # for k in base_doc_sections_map.keys():
    #   # print(base_doc_sections_map[k])
    #   # print("key:{}; baseSection:{}; diffSection:{}".format(k,base_doc_sections_map[k], diff_doc_sections_map[k]))
    #   logging.debug("key:{}; \nbaseSection:{}; \ndiffSection:{}".format(k,base_doc_sections_map[k], diff_doc_sections_map[k]))

    # zip 2 files sections
    zippedClauses = list(
        zip(base_doc_sections_map.keys(), base_doc_sections_map.values(),
            diff_doc_sections_map.values()))

    # call the predictor
    pred = Predict(zippedClauses)
    results = pred.run()
    for res in results:
        print(res)
Ejemplo n.º 3
0
# -*- coding: utf-8 -*-
from cli import Cli
from train import Train
from predict import Predict
import os
import shutil

if __name__ == '__main__':

    if not os.path.isdir('output'):
        os.mkdir('output')
    # reset
    if os.path.isdir('temp'):
        shutil.rmtree('temp')
    os.mkdir('temp')
    # create cli
    args = Cli.create_parser().parse_args()
    if args.subparser_name == 'train':
        t = Train(int(args.model), args.lang)
        t.run()
    else:
        p = Predict(int(args.model))
        p.run()