Ejemplo n.º 1
0
    def test_net_will_verify_bl2(self):
        for _ in range(0, 5):
            net = create_net()
            train_and_check(net, league='bl2')

            (verified, _) = verify(net, league='bl2', factor=0.85)
            if verified:
                break
        self.assertTrue(verified)
    def test_after_serialize_same(self):
        net1 = create_net()
        result1 = train_and_check(net1)

        string = as_string(net1)
        net2 = from_string(string)

        result2 = train_and_check(net2, train_set=[])

        self.assertEqual(result1.get_performance(), result2.get_performance())
    def test_save_load_from_file(self):
        net1 = create_net()
        result1 = train_and_check(net1)

        filename = './prediction/pickles/test.pickle'
        save_net(net1, filename)
        net2 = load_net(filename)

        result2 = train_and_check(net2, train_set=[])

        self.assertEqual(result1.get_performance(), result2.get_performance())
    def test_training_improves(self):
        for _ in range(0, 3):
            result_1 = train_and_check(self.net, [], '2016')
            if result_1.get_performance() >= 50:
                self.net = create_net()
            else:
                break

        result_2 = train_and_check(self.net, ['2015'], '2016')

        self.assertGreater(result_2.get_performance(), result_1.get_performance())
        self.is_in_range(result_2.get_performance(), 45, range_value=5)

        stats = result_2.get_statistics()
        self.assertGreater(stats[0], 2)
        self.assertGreater(stats[1], 5)
        self.assertGreater(stats[2], 3)
    def test_dummy_pick_leader(self):
        self.net = PickLeader()
        self.trainer = NetTrainer(self.net)

        result = train_and_check(self.net, [], '2016')

        self.assertEqual(result.get_count(), 216)
        self.assertEqual(result.get_performance(), 47)
    def test_not_trained_net(self):
        result = train_and_check(self.net, [], '2016')

        self.assertGreater(result.get_hits(), 0)
        self.assertEqual(result.get_count(), 216)

        self.assertGreater(result.get_performance(), 1)
        self.assertLess(result.get_performance(), 100)
Ejemplo n.º 7
0
    def test_net_will_predict_each(self):
        net = create_net()
        result = train_and_check(net)
        stats = result.get_statistics()

        self.assertGreater(stats[0], 1)
        self.assertGreater(stats[1], 1)
        self.assertGreater(stats[2], 1)
    def check_season_generic(self, season, train_seasons, expected_result):

        result = train_and_check(self.net, train_seasons, season)

        self.is_in_range(result.get_performance(), expected_result, range_value=5)

        stats = result.get_statistics()
        self.assertGreater(stats[0], 3)
        self.assertGreater(stats[1], 4)
        self.assertGreater(stats[2], 1)
Ejemplo n.º 9
0
def main():
    x_axis = []
    y_axis = []

    n = 15
    for i in range(0, n + 1):
        net = create_net()
        x_axis.append(i + 1)

        untrained = train_and_check(net, [])
        trained = train_and_check(net)
        verified = verify(net, delta=2)

        print 'Execution {0}:'.format(i+1), untrained.get_performance(),\
            '=>', trained, 'verified:', verified

        y_axis.append(trained.get_performance())

    show_plot(x_axis, y_axis, n)
Ejemplo n.º 10
0
def load_and_check(filename, league):
    logger = logging.getLogger()
    net = load_net(filename)

    query_stats = train_and_check(net, train_set=[])
    logger.debug('using file %s', filename)
    logger.debug(query_stats)
    (_, verify_result) = verify(net, league=league)
    points = calculate_points(query_stats, verify_result)
    entry = NetEntry(filename, points, verify_result, query_stats)
    return (net, entry)
Ejemplo n.º 11
0
def main():
    x_axis = []
    y_axis = []

    start = 5
    n = 10
    for i in range(start, start + n + 1):
        net = create_net(hidden_layer=i)
        x_axis.append(i)

        result = train_and_check(net)
        verified = verify(net)

        print 'Executed with', i, 'hidden layers:', result, 'verified', verified
        y_axis.append(result.get_performance())

    show_plot(x_axis, y_axis, start + n)
Ejemplo n.º 12
0
def main():
    x_axis = []
    y_axis = []
    step = 0.01

    n = 20
    for i in range(0, n + 1):
        alpha = step * i
        net = create_net(alpha=alpha)
        x_axis.append(alpha)

        result = train_and_check(net)
        verified = verify(net, delta=1)
        print 'Executed with alpha', i * step, ':', result, 'verified', verified

        y_axis.append(result.get_performance())

    show_plot(x_axis, y_axis, n * step)
Ejemplo n.º 13
0
def main():
    x_axis = []
    y_axis = []
    seasons = [
        '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014',
        '2015'
    ]

    n = 25
    step = 1
    net = create_net(alpha=0.1)
    for i in range(step, n + 1, step):
        x_axis.append(i)

        result = train_and_check(net, max_iterations=step, train_set=seasons)
        verified = verify(net, delta=1)

        print 'Executed with ', i, 'iterations:', result, 'verified:', verified
        y_axis.append(result.get_performance())

    show_plot(x_axis, y_axis, n)