Ejemplo n.º 1
0
 def test_estimator_reduce_l2(self):
     real_weights = [0.66470588, 0.33529412]
     conv = CSVDataConverter(TEST_WEATHER_PATH)
     est = StandardEstimator(*conv.convert(KEY_MAP))
     est.reduce()
     for d, r in zip(est.weights['temperature'].T[0], real_weights):
         self.assertAlmostEqual(d, r)
Ejemplo n.º 2
0
 def test_to_list(self):
     conv = CSVDataConverter(TEST_WEATHER_PATH)
     est = StandardEstimator(*conv.convert(KEY_MAP))
     est.reduce()
     data = to_list(est.produce(conv.predict)['data'])
     for v in data.values():
         self.assertTrue(isinstance(v, list))
Ejemplo n.º 3
0
 def test_estimator_reduce_l1(self):
     real_weights = [0.57777778, 0.42222222]
     conv = CSVDataConverter(TEST_WEATHER_PATH)
     est = StandardEstimator(*conv.convert(KEY_MAP))
     est.reduce(MinkowskiReducer())
     for d, r in zip(est.weights['temperature'].T[0], real_weights):
         self.assertAlmostEqual(d, r)
Ejemplo n.º 4
0
class TestTestDataConverter(unittest.TestCase):
    def setUp(self):
        self.conv = CSVDataConverter(TEST_WEATHER_PATH)

    def test_convert(self):
        predict, real = self.conv.convert(KEY_MAP)
        self.assertEqual(predict['data']['temperature'].shape, (2, 20))
        self.assertEqual(real['data']['temperature'].shape, (1, 20))

    def test_service_names(self):
        services = {'gismeteo': 1, 'meteoprog': 1}
        self.assertListEqual(list(services.keys()),
                             self.conv.service_names().tolist())
Ejemplo n.º 5
0
 def test_from_converter(self):
     real_weights = [0.57777778, 0.42222222]
     est = StandardEstimator.from_converter(
         CSVDataConverter(TEST_WEATHER_PATH), KEY_MAP)
     est.reduce(MinkowskiReducer())
     for d, r in zip(est.weights['temperature'].T[0], real_weights):
         self.assertAlmostEqual(d, r)
Ejemplo n.º 6
0
    def test_estimator_produce(self):
        test_temp_list = numpy.array([-3, 7, -4, 6]).reshape(2, 2)
        data = {
            'data': {
                'temperature': test_temp_list,
            },
            'slots': ['one', 'two'],
            'labels': [i for i in range(test_temp_list.shape[1])]
        }
        conv = CSVDataConverter(TEST_WEATHER_PATH)
        est = StandardEstimator(*conv.convert(KEY_MAP))
        est.reduce(EuclideanReducer())
        w = est.weights['temperature']
        res = est.produce(data)['data']['temperature']

        test_res = w.T.dot(test_temp_list)
        self.assertEqual(test_res[0, 0], res[0, 0])
        self.assertEqual(test_res[0, 1], res[0, 1])
Ejemplo n.º 7
0
 def test_estimator_type_error_raise(self):
     conv = CSVDataConverter(TEST_WEATHER_PATH)
     pred, real = conv.convert(KEY_MAP)
     del pred['slots']
     with self.assertRaises(KeyError):
         StandardEstimator(pred, real)
Ejemplo n.º 8
0
 def setUp(self):
     self.conv = CSVDataConverter(TEST_WEATHER_PATH)