Ejemplo n.º 1
0
def forward(model, x, mean, std, cuda, volatile=False):
    
    stack_num = x.shape[1]
    
    x = move_data_to_gpu(x, cuda, volatile)
    
    # hamming window
    x = x * hamming_window

    # rdft
    (x_real, x_imag) = dft.rdft(x)
    x_mag = torch.sqrt(x_real ** 2 + x_imag ** 2)
    cos = x_real / x_mag
    sin = x_imag / x_mag
        
    x = transform(x_mag, type='torch')
    x = pp_data.scale(x, mean, std)
    
    output = model(x)
    
    output = pp_data.inv_scale(output, mean, std)
    output = inv_transform(output, type='torch')
    
    y_real = output * cos[:, stack_num // 2, :]
    y_imag = output * sin[:, stack_num // 2, :]
    
    s = dft.irdft(y_real, y_imag)
    
    s /= hamming_window

    return s
Ejemplo n.º 2
0
Archivo: tmp01b.py Proyecto: zqy1/sednn
def evaluate(model, data_loader, mean_, std_, cuda):
    iter = 0

    output_all = []
    target_all = []

    max_iter = 200

    for (batch_x, batch_y) in data_loader.generate():
        output = forward(model, batch_x, mean_, std_, cuda, volatile=True)
        output_all.append(output)

        batch_y = np.abs(batch_y)
        batch_y = move_data_to_gpu(batch_y, cuda)
        batch_y = transform(batch_y, type='torch')
        batch_y = pp_data.scale(batch_y, mean_, std_)

        target_all.append(batch_y)

        iter += 1

        if iter == max_iter:
            break

    output_all = torch.cat(output_all, dim=0)
    target_all = torch.cat(target_all, dim=0)
    loss = mse_loss(output_all, target_all)

    return loss
Ejemplo n.º 3
0
Archivo: tmp01b.py Proyecto: zqy1/sednn
def forward(model, x, mean, std, cuda, volatile=False):
    x = np.abs(x)
    x = move_data_to_gpu(x, cuda, volatile)

    x = transform(x, type='torch')
    x = pp_data.scale(x, mean, std)

    output = model(x)

    return output
Ejemplo n.º 4
0
def forward(model, x, mean, std, dft, cuda, volatile=False):

    x = np.abs(x)
    x = move_data_to_gpu(x, cuda, volatile)

    # (x_real, x_imag) = dft.rdft(x)
    # x = torch.sqrt(x_real ** 2 + x_imag ** 2)

    import crash
    pause

    x = transform(x, type='torch')
    x = pp_data.scale(x, mean, std)

    import crash
    pause

    output = model(x)

    output = pp_data.inv_scale(output, mean, std)
    output = inv_transform(output, type='torch')

    return output
Ejemplo n.º 5
0
Archivo: tmp01b.py Proyecto: zqy1/sednn
def train(args):
    workspace = args.workspace
    audio_type = args.audio_type
    stack_num = args.stack_num
    hop_frames = args.hop_frames
    filename = args.filename
    cuda = args.use_cuda and torch.cuda.is_available()
    print("cuda:", cuda)

    hdf5_file = os.path.join(args.workspace, "features",
                             "cmplx_spectrogram.h5")
    data_type = 'train'

    t1 = time.time()
    batch_size = 500
    data_loader = pp_data.DataLoader(hdf5_file,
                                     data_type,
                                     audio_type,
                                     stack_num,
                                     hop_frames,
                                     center_only=True,
                                     batch_size=batch_size)
    eval_tr_data_loader = pp_data.DataLoader(hdf5_file,
                                             'train',
                                             audio_type,
                                             stack_num,
                                             hop_frames,
                                             center_only=True,
                                             batch_size=batch_size)
    eval_te_data_loader = pp_data.DataLoader(hdf5_file,
                                             'test',
                                             audio_type,
                                             stack_num,
                                             hop_frames,
                                             center_only=True,
                                             batch_size=batch_size)
    print("Load time: %s" % (time.time() - t1))

    # Load scalar
    scalar_path = os.path.join(workspace, "scalars", filename, "scalar.p")
    (mean_, std_) = cPickle.load(open(scalar_path, 'rb'))
    mean_ = move_data_to_gpu(mean_, cuda)
    std_ = move_data_to_gpu(std_, cuda)

    # Model
    n_freq = 257
    model = DNN(stack_num, n_freq)

    if cuda:
        model.cuda()

    # Optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=1e-4,
                           betas=(0.9, 0.999),
                           eps=1e-08,
                           weight_decay=0)

    # Train
    iter = 0
    model_dir = os.path.join(workspace, "models", filename, audio_type)
    pp_data.create_folder(model_dir)
    t_train = time.time()

    for (batch_x, batch_y) in data_loader.generate():

        output = forward(model, batch_x, mean_, std_, cuda)

        batch_y = np.abs(batch_y)
        batch_y = move_data_to_gpu(batch_y, cuda)
        batch_y = transform(batch_y, type='torch')
        batch_y = pp_data.scale(batch_y, mean_, std_)

        loss = mse_loss(output, batch_y)

        # if iter%1000==0:
        #
        #     output = pp_data.inv_scale(output, mean_, std_)
        #     # output = inv_transform(output, type='torch')
        #
        #     batch_y = pp_data.inv_scale(batch_y, mean_, std_)
        #
        #     fig, axs = plt.subplots(3,1, sharex=True)
        #     axs[0].matshow(np.log((np.abs(batch_x[:, 0, :]))).T, origin='lower', aspect='auto', cmap='jet')
        #     axs[1].matshow(batch_y.data.cpu().numpy().T, origin='lower', aspect='auto', cmap='jet')
        #     axs[2].matshow(output.data.cpu().numpy().T, origin='lower', aspect='auto', cmap='jet')
        #     plt.show()

        # Backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        iter += 1

        # Evaluate.
        loss_ary = []
        if iter % 500 == 0:
            t_eval = time.time()
            tr_loss = evaluate(model, eval_tr_data_loader, mean_, std_, cuda)
            # tr_loss = -1
            te_loss = evaluate(model, eval_te_data_loader, mean_, std_, cuda)
            print("Iter: %d, train err: %f, test err: %f, train time: %s, eval time: %s" % \
                    (iter, tr_loss, te_loss, time.time() - t_train, time.time() - t_eval))
            t_train = time.time()

        # Save model.
        if iter % 5000 == 0:
            save_out_dict = {
                'iter': iter,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'te_loss': loss,
            }
            save_out_path = os.path.join(model_dir, "md_%d_iters.tar" % iter)
            torch.save(save_out_dict, save_out_path)
            print("Save model to %s" % save_out_path)

        t1 = time.time()