Ejemplo n.º 1
0
def predict(image_path):
    size = FLAGS.image_size, FLAGS.image_size
    img = get_X(image_path, size)
    ret = model.predict(np.array([img]))
    ret = np.squeeze(ret)
    index = np.argmax(ret, axis=0)
    text = int2text(index, FLAGS.wordset)
    return text
Ejemplo n.º 2
0
def predict(image_path):
    size = FLAGS.image_width, FLAGS.image_height
    img = get_X(image_path, size)
    ret = model.predict(np.array([img]))
    ret = ret.reshape(FLAGS.captcha_size, FLAGS.charset_size)
    index = np.argmax(ret, axis=1)
    text = index2text(index, FLAGS.charset)
    return text
Ejemplo n.º 3
0
def predict_top_5(image_path):
    size = FLAGS.image_size, FLAGS.image_size
    img = get_X(image_path, size)
    ret = model.predict(np.array([img]))
    ret = np.squeeze(ret)
    ret = np.argsort(ret)
    ret = ret[-5:][::-1]
    text = [int2text(index, FLAGS.wordset) for index in ret]
    return text
Ejemplo n.º 4
0
def predict(img):
    size = (FLAGS.image_size, FLAGS.image_size)
    image = get_X(img, size)
    predict_opts = [graph['predicted_val_top_k'], graph['predicted_index_top_k']]
    feed_dict = {graph['images']: [image],
                 graph['keep_prob']: 1.0,
                 graph['is_training']: False}
    predict_val, predict_index = sess.run(predict_opts, feed_dict=feed_dict)
    predict_index = predict_index.flatten()
    text = int2text(predict_index[0], FLAGS.wordset)
    return text
Ejemplo n.º 5
0
def inference(image):
    print('inference')
    from preprocess import get_X
    temp_image = get_X(image)
    with tf.Session() as sess:
        logger.info('========start inference============')
        # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
        # Pass a shadow label 0. This label will not affect the computation graph.
        graph = build_graph(top_k=3)
        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
        predict_val, predict_index = sess.run(
            [graph['predicted_val_top_k'], graph['predicted_index_top_k']],
            feed_dict={
                graph['images']: temp_image,
                graph['keep_prob']: 1.0,
                graph['is_training']: False
            })
    return predict_val, predict_index
import pandas as pd
import preprocess
import tensorflow as tf
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.utils import shuffle

data = pd.read_csv("myFP_217_D2.csv", header=None)

D2 = preprocess.get_data(data)

X = preprocess.get_X(D2)
X = preprocess.comb(X)
# y = pd.DataFrame(preprocess.get_target(D2))
value = preprocess.get_target(D2)
value = MultiLabelBinarizer().fit_transform(value)
y = pd.DataFrame(value)
X, y = shuffle(X, y, random_state=0)

X_train, X_test = X[:int((0.8 * len(X)))], X[int((0.8 * len(X))):]
y_train, y_test = y[:int((0.8 * len(X)))], y[int((0.8 * len(X))):]


def rnn1():
    n_nodes_hl1 = 1024
    n_nodes_hl2 = 512
    n_nodes_hl3 = 256

    n_classes = 7
    batch_size = 100

    x = tf.placeholder(tf.float32, [None, 2048], name="features")