Ejemplo n.º 1
0
def getData(projectname):
    x_train, y_train = preprocess.get_xy_train(
        projectname,
        tokenizer=tokenizer,
        mn_maxlen=MAX_SEQUENCE_LENGTH,
        embedding_matrix=embedding_matrix)
    x_test, y_test = preprocess.get_xy_test(projectname,
                                            tokenizer=tokenizer,
                                            maxlen=MAX_SEQUENCE_LENGTH,
                                            embedding_matrix=embedding_matrix)
    return x_train, y_train, x_test, y_test
Ejemplo n.º 2
0
W2V_MODEL_DIR = '/Users/knight/Desktop/GodClassDetection/embedding_model/new_model6_nltk.bin'
TRAIN_SET_DIR = '/Users/knight/Desktop/GodClassDetection/trainset'  # 直接改成自己的路径
FULL_MN_DIR = TRAIN_SET_DIR

tokenizer = preprocess.get_tokenizer(FULL_MN_DIR)
all_word_index = tokenizer.word_index
embedding_matrix = preprocess.get_embedding_matrix(all_word_index,
                                                   W2V_MODEL_DIR,
                                                   dim=EMBEDDING_DIM)

acc_list = []
loss_list = []

print("11111111111111111")
x_train, y_train = preprocess.get_xy_train(TRAIN_SET_DIR + '/finetune',
                                           tokenizer=tokenizer,
                                           mn_maxlen=MAX_SEQUENCE_LENGTH,
                                           embedding_matrix=embedding_matrix)

print('Fine tune model.')

# 微调
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
hist = model.fit(x_train, y_train, nb_epoch=10, batch_size=5, verbose=1)
score = model.evaluate(x_train, y_train, verbose=0)

# 模型保存JSON文件
model_json = model.to_json()
with open(
        r'/Users/knight/Desktop/GodClassDetection/trained_model/fine_tune_model.json',
        'w') as file:
    # with open(r'/Users/knight/Desktop/GodClassDetection-master-mao-new/trained_model/fine_tune_gru_model.json', 'w') as file: