Ejemplo n.º 1
0
    wav.write("sound/" + experiment_name + "_random.wav", sample_rate, random)
    wav.write("sound/" + experiment_name + "_reconstruction.wav", sample_rate,
              reconstruction)
    wav.write("sound/" + experiment_name + "_reconstruction_original.wav",
              sample_rate, original)

    ou1 = net1.output(x_train[:50])
    ou2 = net2.output(x_train[:50])
    for i in range(ou2.shape[0]):
        if i < 100:
            plt.figure()
            plt.plot(ou1[i, 0, :, 0], color="g")
            plt.plot(ou2[i, 0, :, 0], color="b")
            plt.plot(x_train[i, 0, :, 0], color="r")
            plt.savefig(plot_dir + str(i) + "_compare.png", cmap=plt.cm.binary)
    pickle_saver(net2.params, "model_no_boost.pkl")

    f = open("readme", "w")
    f.write("SingVAE parameters for experiment: \n------ \n \n")
    f.write("Number of filters:  " + str([net1.in_filters]) + "\n")
    f.write("Filter lengths:  " + str([net1.filter_lengths]) + "\n")
    f.write("Latend variables:  " + str(dim_z) + "\n")
    f.write("Iterations:  " + str(iterations) + "\n")
    f.write("Sample rate:  " + str(sample_rate) + "\n")
    f.close()

    #device_play(net,sample_rate,duration = 1000)
    #use np.squeeze to remove redundant dimentions.
    #out = out.reshape(out.shape[0],out.shape[1],out.shape[3])
    #print out2.shape
Ejemplo n.º 2
0
	wav.write("sound/"+experiment_name+"_reconstruction_original.wav",sample_rate,original)
	# Weights
	plot_params(net.params,weight_plot_dir)
	#ou1 = net1.output(x_train[:50])

	# Reconstruction images
	ou2 = net.output(x_train[:50])
	for i in range(ou2.shape[0]):
		if i <100:
			plt.figure()
	#		plt.plot(ou1[i,0,:,0],color = "g")
			plt.plot(ou2[i,0,:,0],color = "b")
			plt.plot(x_train[i,0,:,0],color = "r")
			plt.savefig(plot_dir+str(i)+"_compare.png",cmap=plt.cm.binary)
	# The model
	to_save = {"architecture":net_args,"weights":net.params,"dataset":data_name,"sample_rate":sample_rate}
	pickle_saver(to_save,model_dir+experiment_name+"_model.pkl")

	# The model hyper parameters
	f = open(experiment_name+"readme","w")
	f.write("SingVAE parameters for experiment: \n------ \n \n")
	f.write("Number of filters:  "+ str([net.in_filters]) +"\n")
	f.write("Filter lengths:  "+str([net.filter_lengths])+"\n")
	f.write("Latend variables:  "+str(net_args["dim_z"])+"\n")
	f.write("Iterations:  "+str(iterations)+"\n")
	f.write("Sample rate:  "+str(sample_rate)+"\n")
	f.close()



Ejemplo n.º 3
0
	wav.write("sound/"+experiment_name+"_reconstruction.wav",sample_rate,reconstruction)
	wav.write("sound/"+experiment_name+"_reconstruction_original.wav",sample_rate,original)
	# Weights
	plot_params(net2.params,weight_plot_dir)
	#ou1 = net1.output(x_train[:50])

	# Reconstruction images
	ou2 = net2.output(x_train[:50])
	for i in range(ou2.shape[0]):
		if i <100:
			plt.figure()
	#		plt.plot(ou1[i,0,:,0],color = "g")
			plt.plot(ou2[i,0,:,0],color = "b")
			plt.plot(x_train[i,0,:,0],color = "r")
			plt.savefig(plot_dir+str(i)+"_compare.png",cmap=plt.cm.binary)
	# The model
	pickle_saver(net2.params,model_dir+"model.pkl")

	# The model hyper parameters
	f = open("readme","w")
	f.write("SingVAE parameters for experiment: \n------ \n \n")
	f.write("Number of filters:  "+ str([net1.in_filters]) +"\n")
	f.write("Filter lengths:  "+str([net1.filter_lengths])+"\n")
	f.write("Latend variables:  "+str(dim_z)+"\n")
	f.write("Iterations:  "+str(iterations)+"\n")
	f.write("Sample rate:  "+str(sample_rate)+"\n")
	f.close()



print "Creating Theano functions"
encoder.createGradientFunctions()

print "Initializing weights and biases"
encoder.initParams()
lowerbound = np.array([])
testlowerbound = np.array([])

begin = time.time()

# Declare figures for interactive mode
plt.ion()
f1 = plt.figure(1)

for j in xrange(n_steps):
    encoder.lowerbound = 0
    print 'Iteration:', j
    begin = time.time()
    encoder.iterate(data)
    end = time.time()
    print("Iteration %d, lower bound = %.2f,"
          " time = %.2fs"
          % (j, encoder.lowerbound/N, end - begin))
    if j%10 == 0:
        mu_out3 = encoder.getTestOutput(data)
        data.shape
        plot_reconstructed(data[:10,:1000],mu_out3.T[:10,:1000],f1,interactive=True)

pickle_saver(encoder,"encoder.pkl")
Ejemplo n.º 5
0
	random,reconstruction,original = sound_write.sample_write(net1,880,duration = 10)
	wav.write("sound/"+experiment_name+"_random.wav",sample_rate,random)
	wav.write("sound/"+experiment_name+"_reconstruction.wav",sample_rate,reconstruction)
	wav.write("sound/"+experiment_name+"_reconstruction_original.wav",sample_rate,original)

	ou1 = net1.output(x_train[:50])
	ou2 = net2.output(x_train[:50])
	for i in range(ou2.shape[0]):
		if i <100:
			plt.figure()
			plt.plot(ou1[i,0,:,0],color = "g")
			plt.plot(ou2[i,0,:,0],color = "b")
			plt.plot(x_train[i,0,:,0],color = "r")
			plt.savefig(plot_dir+str(i)+"_compare.png",cmap=plt.cm.binary)
	pickle_saver(net2.params,"model_no_boost.pkl")


	f = open("readme","w")
	f.write("SingVAE parameters for experiment: \n------ \n \n")
	f.write("Number of filters:  "+ str([net1.in_filters]) +"\n")
	f.write("Filter lengths:  "+str([net1.filter_lengths])+"\n")
	f.write("Latend variables:  "+str(dim_z)+"\n")
	f.write("Iterations:  "+str(iterations)+"\n")
	f.write("Sample rate:  "+str(sample_rate)+"\n")
	f.close()

	#device_play(net,sample_rate,duration = 1000)
	#use np.squeeze to remove redundant dimentions.
	#out = out.reshape(out.shape[0],out.shape[1],out.shape[3])
	#print out2.shape