Ejemplo n.º 1
0
def get_img(imgloc, segloc=None):
    npimg, _, npseg = preprocess.reorient(imgloc, segloc)
    npimg = preprocess.resize_to_nn(npimg).astype(np.float32)
    npimg = preprocess.window(npimg, -100, 400)
    npimg = preprocess.rescale(npimg, -100, 400)
    npseg = preprocess.resize_to_nn(npseg).astype(np.uint8)

    assert npimg.shape == npseg.shape
    return npimg[..., np.newaxis], npseg[..., np.newaxis]
Ejemplo n.º 2
0
def get_img(imgloc, segloc=None):
    npimg, _, npseg = preprocess.reorient(imgloc, segloc)
    npimg = preprocess.resize_to_nn(npimg).astype(np.float32)
    npimg = preprocess.window(npimg, hu_lb, hu_ub)
    npimg = preprocess.rescale(npimg, hu_lb, hu_ub)
    npseg = preprocess.resize_to_nn(npseg).astype(np.uint8)

    print(npimg.shape)
    assert npimg.shape == npseg.shape
    return npimg, npseg
Ejemplo n.º 3
0
def get_mda_imgs(dbfile='/rsrch1/ip/jacctor/livermask/trainingdata_small.csv',
                 rootloc='/rsrch1/ip/jacctor/LiTS/LiTS'):

    nscans = 0
    nvalid = 0
    nslices = 0

    with open(dbfile, 'r') as csvfile:
        myreader = csv.DictReader(csvfile, delimiter='\t')

        for row in myreader:
            imageloc = '%s/%s' % (rootloc, row['image'])
            truthloc = '%s/%s' % (rootloc, row['label'])
            print(imageloc, truthloc)
            nscans += 1
            try:
                npimg, header, npseg = preprocess.reorient(imageloc,
                                                           segloc=truthloc)
                nslices += header['dim'][3]
                nvalid += 1
            except nib.filebasedimages.ImageFileError:
                print("could not read file")

    print('\ndone precomputing size:  ', nslices, ' slices, from ', nvalid,
          ' scans out of ', nscans, ' scans.\n')
    imgs = np.empty((nslices, npx, npx))
    segs = np.empty((nslices, npx, npx))

    sidx = 0

    with open(dbfile, 'r') as csvfile:
        myreader = csv.DictReader(csvfile, delimiter='\t')
        for row in myreader:
            imageloc = '%s/%s' % (rootloc, row['image'])
            truthloc = '%s/%s' % (rootloc, row['label'])

            print(imageloc, truthloc)

            try:
                npimg, header, npseg = preprocess.reorient(imageloc,
                                                           segloc=truthloc)

                npimg = preprocess.resize_to_nn(npimg, transpose=True).astype(
                    np.int16)
                npseg = preprocess.resize_to_nn(npseg, transpose=True).astype(
                    np.uint8)

                sss = header['dim'][3]
                imgs[sidx:sidx + sss, ...] = npimg
                segs[sidx:sidx + sss, ...] = npseg
                sidx += sss
            except nib.filebasedimages.ImageFileError:
                print("ignoring the file I could't read earlier")

    return imgs, segs
Ejemplo n.º 4
0
def setup_training_from_file():

    datacsv = settings.options.dbfile
    # create  custom data frame database type
    os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

    logfileoutputdir = settings.options.outdir
    os.system ('mkdir -p ' + logfileoutputdir)
    os.system ('mkdir -p ' + logfileoutputdir + '/data')
    os.system ('mkdir -p ' + logfileoutputdir + '/data/img')
    os.system ('mkdir -p ' + logfileoutputdir + '/data/seg')
    print("Output to\t", logfileoutputdir)
    imgdir = logfileoutputdir+'/data/img'
    segdir = logfileoutputdir+'/data/seg'

    imglist = []
    seglist = []
    dataidlist = []
    with open(datacsv, 'r') as csvfile:
        myreader = csv.DictReader(csvfile, delimiter=',')
        for row in myreader:
            dataid = int(row['dataid'])
            imagelocation = '%s/%s' % (settings.options.rootlocation,row['image'])
            truthlocation = '%s/%s' % (settings.options.rootlocation,row['label'])
            print(imagelocation,truthlocation )

            numpyimage, orig_header, numpytruth  = preprocess.reorient(imagelocation, segloc=truthlocation)
            resimage = preprocess.resize_to_nn(numpyimage, transpose=False).astype(settings.IMG_DTYPE)
            resimage = preprocess.window(resimage, settings.options.hu_lb, settings.options.hu_ub)
            resimage = preprocess.rescale(resimage, settings.options.hu_lb, settings.options.hu_ub)

            restruth = preprocess.resize_to_nn(numpytruth, transpose=False).astype(settings.SEG_DTYPE)

            imgROI, segROI = isolate_ROI(resimage, restruth)
            Xloc = imgdir+'/volume-'+str(dataid)
            Yloc = segdir+'/segmentation-'+str(dataid)
            Xlist, Ylist = save_img_into_substacks(imgROI, segROI, Xloc, Yloc)
            imglist += Xlist
            seglist += Ylist
            dataidlist += [dataid]*len(Xlist)

    savelistsloc = logfileoutputdir+'/data/datalocations.txt'
    with open(savelistsloc, 'w') as csvfile:
        writer = csv.writer(csvfile, delimiter=',')
        writer.writerow(['dataid','imgloc','segloc'])
        for row in zip(dataidlist, imglist, seglist):
            writer.writerow(row)

    return savelistsloc
Ejemplo n.º 5
0
def get_img(imgloc, segloc=None):
    npimg, _, npseg = preprocess.reorient(imgloc, segloc)
    npimg = preprocess.resize_to_nn(npimg).astype(np.float32)
    npimg = preprocess.window(npimg, -100, 200)
    npimg = preprocess.rescale(npimg, -100, 200)
    npseg = preprocess.resize_to_nn(npseg).astype(np.uint8)

    print(npimg.shape)
    print(npseg.shape)
    assert npimg.shape == npseg.shape

    npimg = np.transpose(npimg, (2, 0, 1))
    npseg = np.transpose(npseg, (2, 0, 1))

    return npimg[..., np.newaxis], npseg[..., np.newaxis]
Ejemplo n.º 6
0
def get_img(imgloc):

    npimg, _, _ = preprocess.reorient(imgloc)
    npimg       = preprocess.resize_to_nn(npimg, transpose=True).astype(np.int16)
    npimg       = preprocess.window(npimg, -100,300)
    npimg       = preprocess.rescale(npimg, -100,300)

    print(npimg.shape)
    midslice = npimg[int(npimg.shape[0] / 2),:,:]

    return midslice[np.newaxis,:,:,np.newaxis]
Ejemplo n.º 7
0
def PredictModel(model=settings.options.predictmodel,
                 image=settings.options.predictimage,
                 imageheader=None,
                 outdir=settings.options.segmentation):

    if (model != None and image != None and outdir != None):

        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152

        numpypredict, origheader, _ = preprocess.reorient(image)

        assert numpypredict.shape[0:2] == (settings._globalexpectedpixel,
                                           settings._globalexpectedpixel)

        resizepredict = preprocess.resize_to_nn(numpypredict)
        resizepredict = preprocess.window(resizepredict,
                                          settings.options.hu_lb,
                                          settings.options.hu_ub)
        resizepredict = preprocess.rescale(resizepredict,
                                           settings.options.hu_lb,
                                           settings.options.hu_ub)

        opt = GetOptimizer()
        lss, met = GetLoss()
        loaded_model = get_unet()
        loaded_model.compile(loss=lss, metrics=met, optimizer=opt)
        loaded_model.load_weights(model)

        segout_float = loaded_model.predict(resizepredict[...,
                                                          np.newaxis])[..., 0]
        segout_int = (segout_float >= settings.options.segthreshold).astype(
            settings.SEG_DTYPE)

        segin_windowed = preprocess.resize_to_original(resizepredict)
        segin_windowed_img = nib.Nifti1Image(segin_windowed,
                                             None,
                                             header=origheader)
        segin_windowed_img.to_filename(
            outdir.replace('.nii', '-imgin-windowed.nii'))

        segout_float_resize = preprocess.resize_to_original(segout_float)
        segout_float_img = nib.Nifti1Image(segout_float_resize,
                                           None,
                                           header=origheader)
        segout_float_img.to_filename(outdir.replace('.nii', '-pred-float.nii'))

        segout_int_resize = preprocess.resize_to_original(segout_int)
        segout_int_img = nib.Nifti1Image(segout_int_resize,
                                         None,
                                         header=origheader)
        segout_int_img.to_filename(outdir.replace('.nii', '-pred-seg.nii'))

        return segout_float_resize, segout_int_resize
Ejemplo n.º 8
0
def PredictNifti(model, saveloc, imageloc, segloc=None):

    print('loading data: ', imageloc)
    image, origheader, trueseg = preprocess.reorient(imageloc, segloc=segloc)
    image = preprocess.resize_to_nn(image, transpose=False).astype(
        settings.FLOAT_DTYPE)
    image = preprocess.window(image, settings.options.hu_lb,
                              settings.options.hu_ub)
    image = preprocess.rescale(image, settings.options.hu_lb,
                               settings.options.hu_ub)

    image_img = nib.Nifti1Image(image, None, header=origheader)
    image_img.to_filename(saveloc + '-img.nii')

    predseg_float, predseg = PredictNpy(model, image)

    if segloc:
        trueseg = preprocess.resize_to_nn(trueseg, transpose=False).astype(
            settings.SEG_DTYPE)
        names = ['DSC']
        metrics = [dsc_l2_3D_npy]
        if settings.options.liver:
            tseg = (trueseg >= 1).astype(np.int32)[..., np.newaxis]
        elif settings.options.tumor:
            tseg = (trueseg > 1).astype(np.int32)[..., np.newaxis]

        print('pred ', predseg.shape, predseg.dtype, '\ttrue ', tseg.shape,
              tseg.dtype)
        scores = [
            met(tseg.astype(np.int32), predseg.astype(np.float32))
            for met in metrics
        ]
        print('DSC:\t', end='')
        for idx, s in enumerate(scores):
            print(names[idx], '\t', 1.0 - s, end='\t')
        print()

    print('saving data: ', saveloc)
    print(predseg_float.shape)
    for i in range(predseg_float.shape[-1]):
        segout_float_img = nib.Nifti1Image(predseg_float[..., i],
                                           None,
                                           header=origheader)
        segout_float_img.to_filename(saveloc + '-float-' + str(i) + '.nii')
        trueseg_i = (trueseg == i).astype(settings.SEG_DTYPE)
        segout_float_img = nib.Nifti1Image(predseg_float[..., i],
                                           None,
                                           header=origheader)
        segout_float_img.to_filename(saveloc + '-truth-' + str(i) + '.nii')
    trueseg_img = nib.Nifti1Image(trueseg, None, header=origheader)
    trueseg_img.to_filename(saveloc + '-truth.nii')
    predseg_img = nib.Nifti1Image(predseg, None, header=origheader)
    predseg_img.to_filename(saveloc + '-int.nii')

    if settings.options.ttdo and segloc:
        print('starting TTDO...')

        loaded_model = model.layers[-2]
        imagedata = np.transpose(image, (2, 0, 1))[..., np.newaxis]

        f = K.function([loaded_model.layers[0].input,
                        K.learning_phase()], [loaded_model.layers[-1].output])

        print('\tgenerating trials...')
        results = np.zeros(trueseg.shape + (
            1,
            settings.options.ntrials,
        ))
        nvalidslices = imagedata.shape[0]
        stride = 128
        for jj in range(settings.options.ntrials):
            zidx = 0
            while zidx < nvalidslices:
                maxz = min(zidx + stride, nvalidslices)
                #                out = f([imagedata[zidx:maxz,...], 1])[0]
                #                 out = np.transpose(out, (1,2,0,3))
                #                results[...,zidx:maxz,0,jj] = out[...,0]
                results[..., zidx:maxz, 0, jj] = np.transpose(
                    f([imagedata[zidx:maxz, ...], 1])[0], (1, 2, 0, 3))[..., 0]
                zidx += stride

        print('\tcalculating statistics...')
        pred_avg = results.mean(axis=-1)
        pred_var = results.var(axis=-1)
        pred_ent = np.zeros(pred_avg.shape)
        ent_idx0 = pred_avg > 0
        ent_idx1 = pred_avg < 1
        ent_idx = np.logical_and(ent_idx0, ent_idx1)
        pred_ent[ent_idx] = -1*np.multiply(      pred_avg[ent_idx], np.log(      pred_avg[ent_idx])) \
                            -1*np.multiply(1.0 - pred_avg[ent_idx], np.log(1.0 - pred_avg[ent_idx]))

        print('\tsaving statistics...')

        # save pred_avg
        for i in range(pred_avg.shape[-1]):
            segout_float_img = nib.Nifti1Image(pred_avg[..., i],
                                               None,
                                               header=origheader)
            segout_float_img.to_filename(saveloc + '-avg-float-' + str(i) +
                                         '.nii')
        pred_avg_int = np.argmax(pred_avg, axis=-1)
        predseg_img = nib.Nifti1Image(pred_avg_int, None, header=origheader)
        predseg_img.to_filename(saveloc + '-avg-int.nii')

        # save pred_var
        for i in range(pred_var.shape[-1]):
            segout_float_img = nib.Nifti1Image(pred_var[..., i],
                                               None,
                                               header=origheader)
            segout_float_img.to_filename(saveloc + '-var-float-' + str(i) +
                                         '.nii')

        # save pred_ent
        for i in range(pred_ent.shape[-1]):
            segout_float_img = nib.Nifti1Image(pred_ent[..., i],
                                               None,
                                               header=origheader)
            segout_float_img.to_filename(saveloc + '-ent-float-' + str(i) +
                                         '.nii')

    return predseg, names, scores
Ejemplo n.º 9
0
def PredictModel(model=settings.options.predictmodel,
                 image=settings.options.predictimage,
                 imageheader=None,
                 outdir=settings.options.segmentation,
                 seg=None):

    if (model != None and image != None and outdir != None):

        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152

        numpypredict, origheader, origseg = preprocess.reorient(image,
                                                                segloc=seg)

        assert numpypredict.shape[0:2] == (settings._globalexpectedpixel,
                                           settings._globalexpectedpixel)

        resizepredict = preprocess.resize_to_nn(numpypredict)
        resizepredict = preprocess.window(resizepredict,
                                          settings.options.hu_lb,
                                          settings.options.hu_ub)
        resizepredict = preprocess.rescale(resizepredict,
                                           settings.options.hu_lb,
                                           settings.options.hu_ub)

        if settings.options.D3 or settings.options.D25:
            dataid = np.ones((resizepredict.shape[0]))
            idx = np.array([1])
            resizepredict2 = thick_slices(resizepredict,
                                          settings.options.thickness, dataid,
                                          idx)
        else:
            resizepredict2 = resizepredict

        if seg:
            origseg = preprocess.resize_to_nn(origseg)
            origseg = preprocess.livermask(origseg)
            if settings.options.D25:
                dataid_origseg = np.ones((origseg.shape[0]))
                origseg = thick_slices(origseg, 1, dataid_origseg, idx)
                origseg = origseg[..., 0]
#        if not settings.options.D25 and not settings.options.D3:
#            origseg = origseg.transpose((0,2,1)).astype(settings.FLOAT_DTYPE)

            origseg_img = nib.Nifti1Image(
                preprocess.resize_to_original(origseg), None)
            origseg_img.to_filename(outdir.replace('.nii', '-trueseg.nii'))

        ###
        ### set up model
        ###
        loaded_model = load_model(model,
                                  custom_objects={
                                      'dsc_l2': dsc_l2,
                                      'l1': l1,
                                      'dsc': dsc,
                                      'dsc_int': dsc,
                                      'ISTA': ISTA
                                  },
                                  compile=False)
        #loaded_model.summary()

        if settings.options.D25:
            segout_float = loaded_model.predict(resizepredict2)[..., 0]
        else:
            segout_float = loaded_model.predict(
                resizepredict2[..., np.newaxis])[..., 0]

        segout_int = (segout_float >= settings.options.segthreshold).astype(
            settings.SEG_DTYPE)

        if settings.options.D3:
            segout_float = unthick_slices(segout_float,
                                          settings.options.thickness, dataid,
                                          idx)
            segout_int = unthick_slices(segout_int, settings.options.thickness)
        elif settings.options.D25:
            resizepredict = resizepredict.transpose((0, 2, 1))

        #segout_int   = preprocess.largest_connected_component(segout_int).astype(settings.SEG_DTYPE)

        segin_windowed = preprocess.resize_to_original(resizepredict)
        segin_windowed_img = nib.Nifti1Image(segin_windowed,
                                             None,
                                             header=origheader)
        segin_windowed_img.to_filename(
            outdir.replace('.nii', '-imgin-windowed.nii'))

        segout_float_resize = preprocess.resize_to_original(segout_float)
        segout_float_img = nib.Nifti1Image(segout_float_resize,
                                           None,
                                           header=origheader)
        segout_float_img.to_filename(outdir.replace('.nii', '-pred-float.nii'))

        segout_int_resize = preprocess.resize_to_original(segout_int)
        segout_int_img = nib.Nifti1Image(segout_int_resize,
                                         None,
                                         header=origheader)
        segout_int_img.to_filename(outdir.replace('.nii', '-pred-seg.nii'))

        if seg:
            #score = dsc_l2_3D(origseg, segout_int)
            score = dsc_l2_3D(origseg.astype(settings.FLOAT_DTYPE),
                              segout_float)
            print('dsc:\t', 1.0 - score)

        return segout_float_resize, segout_int_resize
Ejemplo n.º 10
0
def PredictDropout(model=settings.options.predictmodel,
                   image=settings.options.predictimage,
                   outdir=settings.options.segmentation,
                   seg=None):

    if not (model != None and image != None and outdir != None):
        return

    if model is None:
        model = settings.options.predictmodel
    if outdir is None:
        outdir = settings.options.segmentation

    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152

    numpypredict, origheader, origseg = preprocess.reorient(image, segloc=seg)
    assert numpypredict.shape[0:2] == (settings._globalexpectedpixel,
                                       settings._globalexpectedpixel)

    resizepredict = preprocess.resize_to_nn(numpypredict)
    resizepredict = preprocess.window(resizepredict, settings.options.hu_lb,
                                      settings.options.hu_ub)
    resizepredict = preprocess.rescale(resizepredict, settings.options.hu_lb,
                                       settings.options.hu_ub)

    if seg:
        origseg = preprocess.resize_to_nn(origseg)
        origseg = preprocess.livermask(origseg)

    # save unprocessed image_in
    img_in_nii = nib.Nifti1Image(image, None, header=origheader)
    img_in_nii.to_filename(outdir.replace('.nii', '-imgin.nii'))

    # save preprocessed image_in
    segin_windowed_img = nib.Nifti1Image(resizepredict, None)
    segin_windowed_img.to_filename(
        outdir.replace('.nii', '-imgin-windowed.nii'))

    # save true segmentation
    if seg:
        origseg_img = nib.Nifti1Image(origseg, None)
        origseg_img.to_filename(outdir.replace('.nii', '-seg.nii'))

    ###
    ### set up model
    ###

    loaded_model = load_model(model,
                              custom_objects={
                                  'dsc_l2': dsc_l2,
                                  'l1': l1,
                                  'dsc': dsc,
                                  'dsc_int': dsc,
                                  'ISTA': ISTA
                              })

    ###
    ### making baseline prediction and saving to file
    ###

    print('\tmaking baseline predictions...')

    segout_float = loaded_model.predict(resizepredict[..., np.newaxis])[..., 0]
    segout_int = (segout_float >= settings.options.segthreshold).astype(
        settings.SEG_DTYPE)
    segout_int = preprocess.largest_connected_component(segout_int).astype(
        settings.SEG_DTYPE)

    segout_float_img = nib.Nifti1Image(segout_float, None)
    segout_float_img.to_filename(outdir.replace('.nii', '-pred-float.nii'))

    segout_int_img = nib.Nifti1Image(segout_int, None)
    segout_int_img.to_filename(outdir.replace('.nii', '-pred-seg.nii'))

    if seg:
        score = dsc_l2_3D(origseg, segout_int)
        print('\t\t\tdsc:\t', 1.0 - score)

    ###
    ### making predictions using different Bernoulli draws for dropout
    ###

    print('\tmaking predictions with different dropouts trials...')

    f = K.function([loaded_model.layers[0].input,
                    K.learning_phase()], [loaded_model.layers[-1].output])

    results = np.zeros(resizepredict.shape + (settings.options.ntrials, ))
    for jj in range(settings.options.ntrials):
        results[..., jj] = f([resizepredict[..., np.newaxis], 1])[0][..., 0]

    print('\tcalculating statistics...')

    pred_avg = results.mean(axis=-1)
    pred_var = results.var(axis=-1)
    pred_ent = np.zeros(pred_avg.shape)
    ent_idx0 = pred_avg > 0
    ent_idx1 = pred_avg < 1
    ent_idx = np.logical_and(ent_idx0, ent_idx1)
    pred_ent[ent_idx] = -1*np.multiply(      pred_avg[ent_idx], np.log(      pred_avg[ent_idx])) \
                        -1*np.multiply(1.0 - pred_avg[ent_idx], np.log(1.0 - pred_avg[ent_idx]))

    print('\tsaving trial statistics...')

    # save pred_avg
    pred_avg_img = nib.Nifti1Image(pred_avg, None)
    pred_avg_img.to_filename(outdir.replace('.nii', '-pred-avg.nii'))

    # save pred_var
    pred_var_img = nib.Nifti1Image(pred_var, None)
    pred_var_img.to_filename(outdir.replace('.nii', '-pred-var.nii'))

    # save pred_ent
    pred_ent_img = nib.Nifti1Image(pred_ent, None)
    pred_ent_img.to_filename(outdir.replace('.nii', '-pred-ent.nii'))

    print('\n')

    return segout_int, segout_float
Ejemplo n.º 11
0
def PredictNifti(model, saveloc, imageloc, segloc=None):

    print('loading data: ', imageloc)
    image, origheader, trueseg = preprocess.reorient(imageloc, segloc=segloc)
    image = preprocess.resize_to_nn(image, transpose=False).astype(
        settings.FLOAT_DTYPE)
    image = preprocess.window(image, settings.options.hu_lb,
                              settings.options.hu_ub)
    image = preprocess.rescale(image, settings.options.hu_lb,
                               settings.options.hu_ub)

    image_img = nib.Nifti1Image(image, None, header=origheader)
    image_img.to_filename(saveloc + '-img.nii')

    predseg_float, predseg = PredictNpy(model, image)

    if segloc:
        trueseg = preprocess.resize_to_nn(trueseg, transpose=False).astype(
            settings.SEG_DTYPE)
        #        names   = ['Background','Liver','Tumor']
        #        metrics = [dsc_l2_background_npy, dsc_l2_liver_npy, dsc_l2_tumor_npy]
        names = ['DSC']
        metrics = [dsc_l2_npy]
        if settings.options.liver:
            tseg = (trueseg >= 1).astype(np.int32)[..., np.newaxis]
        elif settings.options.tumor:
            tseg = (trueseg > 1).astype(np.int32)[..., np.newaxis]

        print('pred ', predseg.shape, predseg.dtype, '\ttrue ', tseg.shape,
              tseg.dtype)
        scores = [
            met(tseg.astype(np.int32), predseg.astype(np.float32))
            for met in metrics
        ]
        print('DSC:\t', end='')
        for idx, s in enumerate(scores):
            print(names[idx], '\t', 1.0 - s, end='\t')
        print()

    print('saving data: ', saveloc)
    print(predseg_float.shape)
    for i in range(predseg_float.shape[-1]):
        segout_float_img = nib.Nifti1Image(predseg_float[..., i],
                                           None,
                                           header=origheader)
        segout_float_img.to_filename(saveloc + '-float-' + str(i) + '.nii')
        trueseg_i = (trueseg == i).astype(settings.SEG_DTYPE)
        segout_float_img = nib.Nifti1Image(predseg_float[..., i],
                                           None,
                                           header=origheader)
        segout_float_img.to_filename(saveloc + '-truth-' + str(i) + '.nii')
    trueseg_img = nib.Nifti1Image(trueseg, None, header=origheader)
    trueseg_img.to_filename(saveloc + '-truth.nii')
    predseg_img = nib.Nifti1Image(predseg, None, header=origheader)
    predseg_img.to_filename(saveloc + '-int.nii')

    if settings.options.ttdo and segloc:
        print('starting TTDO...')
        f = K.function([loaded_model.layers[0].input,
                        K.learning_phase()], [loaded_model.layers[-1].output])

        print('\tgenerating trials...')
        results = np.zeros(trueseg.shape + (
            3,
            settings.options.ntrials,
        ))
        for jj in range(settings.options.ntrials):
            segdata = np.zeros((*image.shape, 3))
            nvalidslices = image.shape[2] - settings.options.thickness + 1
            for z in range(nvalidslices):
                indata = image[np.newaxis, :, :,
                               z:z + settings.options.thickness, np.newaxis]
                segdata[:, :,
                        z:z + settings.options.thickness, :] += f([indata,
                                                                   1])[0, ...]
            for i in range(settings.options.thickness):
                segdata[:, :, i, :] *= (settings.options.thickness) / (i + 1)
            for i in range(settings.options.thickness):
                segdata[:, :,
                        -1 - i, :] *= (settings.options.thickness) / (i + 1)
            results[..., jj] = segdata / settings.options.thickness

        print('\tcalculating statistics...')
        pred_avg = results.mean(axis=-1)
        pred_var = results.var(axis=-1)
        pred_ent = np.zeros(pred_avg.shape)
        ent_idx0 = pred_avg > 0
        ent_idx1 = pred_avg < 1
        ent_idx = np.logical_and(ent_idx0, ent_idx1)
        pred_ent[ent_idx] = -1*np.multiply(      pred_avg[ent_idx], np.log(      pred_avg[ent_idx])) \
                            -1*np.multiply(1.0 - pred_avg[ent_idx], np.log(1.0 - pred_avg[ent_idx]))

        print('\tsaving statistics...')

        # save pred_avg
        for i in range(pred_avg.shape[-1]):
            segout_float_img = nib.Nifti1Image(pred_avg[..., i],
                                               None,
                                               header=origheader)
            segout_float_img.to_filename(saveloc + '-avg-float-' + str(i) +
                                         '.nii')
        pred_avg_int = np.argmax(pred_avg, axis=-1)
        predseg_img = nib.Nifti1Image(pred_avg_int, None, header=origheader)
        predseg_img.to_filename(saveloc + '-avg-int.nii')

        # save pred_var
        for i in range(pred_var.shape[-1]):
            segout_float_img = nib.Nifti1Image(pred_var[..., i],
                                               None,
                                               header=origheader)
            segout_float_img.to_filename(saveloc + '-var-float-' + str(i) +
                                         '.nii')

        # save pred_ent
        for i in range(pred_ent.shape[-1]):
            segout_float_img = nib.Nifti1Image(pred_ent[..., i],
                                               None,
                                               header=origheader)
            segout_float_img.to_filename(saveloc + '-ent-float-' + str(i) +
                                         '.nii')

    return predseg, names, scores
Ejemplo n.º 12
0

imgloc = 'C:/Users/sofia/OneDrive/Documents/GitHub/unlinked_livermask/data/LiTS/TrainingBatch2/volume-130.nii'
segloc = 'C:/Users/sofia/OneDrive/Documents/GitHub/unlinked_livermask/data/LiTS/TrainingBatch2/segmentation-130.nii'
#img, seg = get_img(imgloc, segloc)

modelloclist = ['C:/Users/sofia/OneDrive/Documents/GitHub/convswap_shallow.h5']
outloclist = [
    'C:/Users/sofia/OneDrive/Documents/GitHub/convswap_images/D2_shallow_test_imgs2/'
]

# preprocess image for prediction
img, origheader, origseg = preprocess.reorient(imgloc, segloc=segloc)
assert img.shape[0:2] == (settings._globalexpectedpixel,
                          settings._globalexpectedpixel)
img = preprocess.resize_to_nn(img)
img = preprocess.window(img, settings.options.hu_lb, settings.options.hu_ub)
img = preprocess.rescale(img, settings.options.hu_lb, settings.options.hu_ub)
img = img[..., np.newaxis]

# run functions
for j in range(len(outloclist)):
    modelloc = modelloclist[j]
    outloc = outloclist[j]
    vzm, names, mdict = make_viz_model(modelloc)
    predict_viz_model(vzm, img, names, mdict, outloc)

## histogram of image pixel values
#def plot_histogram(data, b=100, r=(-110,410)):
#    counts, bin_edges = np.histogram(data, bins=b, range=r)
#    plt.bar(bin_edges[:-1], counts, width=[0.8*(bin_edges[i+1]-bin_edges[i]) for i in range(len(bin_edges)-1)])
Ejemplo n.º 13
0
def BuildDB():
    # create  custom data frame database type
    mydatabasetype = [
        ('dataid', int), ('axialliverbounds', bool),
        ('axialtumorbounds', bool), ('imagepath', 'S128'),
        ('imagedata', '(%d,%d)int16' % (settings.options.trainingresample,
                                        settings.options.trainingresample)),
        ('truthpath', 'S128'),
        ('truthdata', '(%d,%d)uint8' % (settings.options.trainingresample,
                                        settings.options.trainingresample))
    ]

    # initialize empty dataframe
    numpydatabase = np.empty(0, dtype=mydatabasetype)

    # load all data from csv
    totalnslice = 0
    with open(settings.options.dbfile, 'r') as csvfile:
        myreader = csv.DictReader(csvfile, delimiter=',')
        for row in myreader:
            imagelocation = '%s/%s' % (settings.options.rootlocation,
                                       row['image'])
            truthlocation = '%s/%s' % (settings.options.rootlocation,
                                       row['label'])
            print(imagelocation, truthlocation)
            numpyimage, orig_header, numpytruth = preprocess.reorient(
                imagelocation, segloc=truthlocation)

            #         # load nifti file
            #         imagedata = nib.load(imagelocation)
            #         numpyimage= imagedata.get_data().astype(settings.IMG_DTYPE )

            # error check
            assert numpyimage.shape[0:2] == (settings._globalexpectedpixel,
                                             settings._globalexpectedpixel)
            nslice = numpyimage.shape[2]
            assert numpytruth.shape[0:2] == (settings._globalexpectedpixel,
                                             settings._globalexpectedpixel)
            assert nslice == numpytruth.shape[2]

            resimage = preprocess.resize_to_nn(
                numpyimage, transpose=False).astype(settings.IMG_DTYPE)
            restruth = preprocess.resize_to_nn(
                numpytruth, transpose=False).astype(settings.SEG_DTYPE)

            # bounding box for each label
            if (np.max(restruth) == 1):
                (liverboundingbox, ) = ndimage.find_objects(restruth)
                tumorboundingbox = None
            else:
                (liverboundingbox,
                 tumorboundingbox) = ndimage.find_objects(restruth)

            if (nslice == restruth.shape[2]):
                # custom data type to subset
                datamatrix = np.zeros(nslice, dtype=mydatabasetype)

                # custom data type to subset
                datamatrix['dataid'] = np.repeat(row['dataid'], nslice)

                # id the slices within the bounding box
                axialliverbounds = np.repeat(False, nslice)
                axialtumorbounds = np.repeat(False, nslice)
                axialliverbounds[liverboundingbox[2]] = True
                if (tumorboundingbox != None):
                    axialtumorbounds[tumorboundingbox[2]] = True
                datamatrix['axialliverbounds'] = axialliverbounds
                datamatrix['axialtumorbounds'] = axialtumorbounds
                datamatrix['imagepath'] = np.repeat(imagelocation, nslice)
                datamatrix['truthpath'] = np.repeat(truthlocation, nslice)
                datamatrix['imagedata'] = resimage.transpose(2, 1, 0)
                datamatrix['truthdata'] = restruth.transpose(2, 1, 0)
                numpydatabase = np.hstack((numpydatabase, datamatrix))
                # count total slice for QA
                totalnslice = totalnslice + nslice
            else:
                print('training data error image[2] = %d , truth[2] = %d ' %
                      (nslice, restruth.shape[2]))

        # save numpy array to disk
        np.save(settings._globalnpfile, numpydatabase)