Ejemplo n.º 1
0
def testone():

    # for param in model.parameters():
    #     print(param.data)
    line = '000016'
    print("Img = ", line)
    x, y, h, w, _ = load_data(line, testing=True)
    y_pred = model(x)
    loss_fn = torch.nn.MSELoss(reduction='mean')

    loss = loss_fn(w * y_pred, w * y)
    print("loss = ", loss)
    # print(x)
    # print(y_pred)
    y_pred = y_pred.cpu()
    pred_img = np.reshape(y_pred.detach().numpy(), (h, w))
    disp = pred_img
    pred_img = (256 * pred_img).astype('uint16')
    # print(pred_img)
    # print(np.max(pred_img))
    im = Image.fromarray(pred_img)
    directory = './disp_1d_w/'
    if not path.exists(directory):
        os.makedirs(directory)
    im.save(directory + line + '.png')

    calib_file = CALIB_PATH + line + '.txt'
    calib = kitti_util.Calibration(calib_file)
    max_high = 1
    lidar = generate_lidar.project_disp_to_points(calib, disp, max_high)
    lidar = np.concatenate([lidar, np.ones((lidar.shape[0], 1))], 1)
    lidar = lidar.astype(np.float32)
    lidar.tofile('{}/{}.bin'.format('./pl/', line))
Ejemplo n.º 2
0
def test_one(index):
    disp = imageio.imread(DISPARITY_PATH + index + '.png') / 256

    # disp = filter_one(disp)
    disp = test_mask(index, disp)
    #disp = semantic_mask(index, disp)
    # disp = filter_one(disp)

    print("Saved Disparity")
    imageio.imwrite('./filtered_disp/' + index + '.png',
                    (disp * 256).astype('uint16'))
    calib_file = CALIB_PATH + index + '.txt'
    calib = kitti_util.Calibration(calib_file)
    max_high = 1
    lidar = generate_lidar.project_disp_to_points(calib, disp, max_high)
    lidar = np.concatenate([lidar, np.ones((lidar.shape[0], 1))], 1)
    lidar = lidar.astype(np.float32)
    lidar.tofile('{}/{}.bin'.format('./pl/', index))
    print("Saved point cloud")
Ejemplo n.º 3
0
def semantic_filter_all():
    file1 = open('../KITTI/object/trainval.txt', 'r')
    lines = file1.read().splitlines()
    file1.close()
    if not os.path.exists(SAVE_PL_PATH):
        os.makedirs(SAVE_PL_PATH)

    for line in lines:
        index = line
        disp = imageio.imread(DISPARITY_PATH + index + '.png') / 256
        # disp = obj_mask(index, disp)
        disp = dedge_obj_mask(index, disp)
        calib_file = CALIB_PATH + index + '.txt'
        calib = kitti_util.Calibration(calib_file)
        max_high = 1
        lidar = generate_lidar.project_disp_to_points(calib, disp, max_high)
        lidar = np.concatenate([lidar, np.ones((lidar.shape[0], 1))], 1)
        lidar = lidar.astype(np.float32)
        lidar.tofile(SAVE_PL_PATH + index + '.bin')
        print("Saved point cloud # " + index)
Ejemplo n.º 4
0
def depth_to_disp():
    DEPTH_PATH = '/home/maxc303/aer1515/ip_basic/demos/outputs/kitti_depth_ipbasic/'
    file1 = open('../KITTI/object/train.txt', 'r')
    lines = file1.read().splitlines()
    file1.close()
    if not os.path.exists(SAVE_PL_PATH):
        os.makedirs(SAVE_PL_PATH)

    for line in lines:
        index = line
        depth = imageio.imread(DEPTH_PATH + index + '.png') / 256
        # disp = obj_mask(index, disp)
        calib_file = CALIB_PATH + index + '.txt'
        calib = kitti_util.Calibration(calib_file)
        max_high = 1
        baseline = 0.54
        depth[depth == 0] = -1
        disp = (calib.f_u * baseline) / depth
        disp[disp < 0] = 0
        disp[disp > 192] = 0
        imageio.imwrite(SAVE_DISP_PATH + index + '.png',
                        (disp * 256).astype('uint16'))
        print("Saved depth # " + index)
Ejemplo n.º 5
0
    def run_from_file(self):
        if self.args_disp.KITTI == '2015':
            from psmnet.dataloader import KITTI_submission_loader as DA
        else:
            from psmnet.dataloader import KITTI_submission_loader2012 as DA
        test_left_img, test_right_img = DA.dataloader(self.args_disp.datapath)

        if not os.path.isdir(self.args_disp.save_path):
            os.makedirs(self.args_disp.save_path)

        # vis = o3d.visualization.Visualizer()
        # vis.create_window()
        # pcd = o3d.geometry.PointCloud()
        # pcd.points = o3d.utility.Vector3dVector(np.ones([100,3]))
        # vis.add_geometry(pcd)

        for inx in range(len(test_left_img)):
            ################ part 1 #######################
            imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
            imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))

            img = self.disp_pred_net.run(imgL_o, imgR_o)

            #####visualize
            cv2.imshow('disparity image', img.astype(np.uint8))
            cv2.waitKey(1)
            ##################

            # # file output
            # print(test_left_img[inx].split('/')[-1])
            # if self.args.save_figure:
            #     skimage.io.imsave(self.args.save_path+'/'+test_left_img[inx].split('/')[-1],(img*256).astype('uint16'))
            # else:
            #     np.save(self.args.save_path+'/'+test_left_img[inx].split('/')[-1][:-4], img)

            ################# part 2 ###################
            predix = test_left_img[inx].split('/')[-1][:-4]
            calib_file = '{}/{}.txt'.format(self.args_gen_lidar.calib_dir,
                                            predix)
            calib = kitti_util.Calibration(calib_file)

            img = (img * 256).astype(np.uint16) / 256.
            lidar, valid_idx = self.pcl_generator.run(calib, img)

            # pad 1 in the indensity dimension
            # lidar = np.concatenate([lidar, np.ones((lidar.shape[0], 1))], 1)
            lidar = lidar.astype(np.float32)  # from float64 to float32
            # lidar.tofile('{}/{}.bin'.format(self.args_gen_lidar.save_dir, predix))
            print('Finish Depth {}'.format(predix))

            ##### visualize
            # pcd.points = o3d.utility.Vector3dVector(lidar)

            imgL_o_flat = imgL_o.reshape([-1, 3])
            imgL_o_valid = imgL_o_flat[valid_idx] / 255.
            # print(imgL_o_valid)
            # print(imgL_o_valid.shape)
            # print(lidar.shape)
            pcd = o3d.geometry.PointCloud()
            pcd.points = o3d.utility.Vector3dVector(lidar)
            pcd.colors = o3d.utility.Vector3dVector(imgL_o_valid)
            # pcd.paint_uniform_color([1, 0.706, 0])

            o3d.visualization.draw_geometries([pcd])
            # vis.update_geometry()
            # vis.poll_events()
            # vis.update_renderer()

            ##################### part 3 ############################
        vis.destroy_window()
Ejemplo n.º 6
0
    lidar.tofile(path)
    return path

if __name__ == "__main__":
    if len(sys.argv) < 2:
        print('Usage ./exe 000025')
        sys.exit(0)

    img_file = sys.argv[1] + '.png'
    calib_file = sys.argv[1] + '.txt'
    depth_file = sys.argv[1] + '.png.npy'
    seg_file = sys.argv[1] + 's.png'
    gt_lidar_file = sys.argv[1] + 'gt.bin'

    image = cv2.imread(img_file)
    calib = kitti_util.Calibration(calib_file)
    depth_map = np.load(depth_file)
    seg_map = cv2.imread(seg_file, 0)
    seg_mask = (seg_map==13).astype(np.uint8)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10)) # 椭圆
    seg_mask = cv2.erode(seg_mask, kernel) > 0

    gt_lidar = np.fromfile(gt_lidar_file, dtype=np.float32).reshape(-1, 4)
    proj_lidar = project_disp_to_depth(calib, depth_map, seg_mask)
    # pad 1 in the indensity dimension
    proj_lidar = np.concatenate([proj_lidar, np.ones((proj_lidar.shape[0], 1))], 1)

    out_lidar = np.concatenate([gt_lidar, proj_lidar], axis=0)

    f = to_bin_file(out_lidar, sys.argv[1]+'p')
    print('Finish Depth {} {}'.format(sys.argv[1], out_lidar.shape[0]))