Ejemplo n.º 1
0
    def __init__(self):
        self.path_train = config.path_train
        self.path_test = config.path_test
        self.path_dev = config.path_dev

        custom_vocab = vocab.create_vocab()
        custom_vocab.set_data(mode=config.all_mode)
        self.vocab_list = custom_vocab.vocab_list
        self.word_to_index = custom_vocab.word_to_index
        self.index_to_word = custom_vocab.index_to_word

        self.stop_words = stopwords.words('english')

        self.labels = config.labels
        self.label_to_index = {
            self.labels[0]: 0,
            self.labels[1]: 1,
            self.labels[2]: 2
        }
Ejemplo n.º 2
0
 def __init__(self):
     path = "./train_data.csv"
     vocab = v.create_vocab(path_csv=path)
     word_to_index = vocab.get_data()
     self.dataset = c.Custom_dataset(word_to_index, path)
     self.model = torch.load("./model.pth")
Ejemplo n.º 3
0
        label = Variable(label.to(device))
        sent = Variable(torch.stack(sent).to(device))
        out = model(sent)
        _, pred = torch.max(out.data, 1)
        total += label.size(0)  # batch size
        correct += (pred == label).sum()
    acc = 100 * (correct.cpu().numpy() / total)
    return acc


if __name__ == "__main__":
    path_csv = config.path_csv

    # 데이터 처리
    start = time.time()
    vocab = v.create_vocab(path_csv=path_csv)
    word_to_index = vocab.get_data()
    print("time vocab load : ", time.time() - start)

    start = time.time()
    dataset = custom_dataset.Custom_dataset(word_to_index, path_csv=path_csv)
    train_data = dataset.get_data()
    print("데이터 준비 완료")
    print("time data load : ", time.time() - start)

    print(len(train_data))

    train_loader = DataLoader(
        train_data,
        batch_size=config.batch,
        shuffle=True,
Ejemplo n.º 4
0
        label = Variable(label.to(device))
        sent1 = Variable(torch.stack(sent1).to(device))
        sent2 = Variable(torch.stack(sent2).to(device))
        out = model(sent1, sent2)
        _, pred = torch.max(out.data, 1)
        total += label.size(0)  # batch size
        correct += (pred == label).sum()
    acc = 100 * (correct.cpu().numpy() / total)
    return acc


if __name__ == "__main__":
    # 데이터 처리

    start = time.time()
    vocab = v.create_vocab(mode=config.vocab_mode)
    vocab_list, word_to_index = vocab.get_data()
    print("time vocab load : ", time.time() - start)

    start = time.time()
    glove = custom_glove()
    embedding = glove.get_data(vocab_list)
    print("time glove emb load : ", time.time() - start)

    start = time.time()
    dataset = custom_dataset.Custom_dataset(vocab_list, word_to_index)
    train_data, test_data, dev_data = dataset.get_data()
    print("time data load : ", time.time() - start)

    train_loader = DataLoader(train_data,
                              batch_size=config.batch,