def main(args):
    '''Main function for active sensing.
  
  Args:
    - data loading parameters:
      - data_names: mimic, ward, cf    
      
    - preprocess parameters: 
      - normalization: minmax, standard, None
      - one_hot_encoding: input features that need to be one-hot encoded
      - problem: 'one-shot' or 'online'
        - 'one-shot': one time prediction at the end of the time-series 
        - 'online': preditcion at every time stamps of the time-series
      - max_seq_len: maximum sequence length after padding
      - label_name: the column name for the label(s)
      - treatment: the column name for treatments
      
    - imputation parameters: 
      - static_imputation_model: mean, median, mice, missforest, knn, gain
      - temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain
            
    - feature selection parameters:
      - feature_selection_model: greedy-addtion, greedy-deletion, recursive-addition, recursive-deletion, None
      - feature_number: selected featuer number
      
    - active_sensing_model_parameters:
      - active_sensing_model_name: asac, deepsensing
      - model_name: rnn, lstm, gru
      - model_parameters: network parameters such as numer of layers
        - h_dim: hidden dimensions
        - n_layer: layer number
        - n_head: head number (only for transformer model)
        - batch_size: number of samples in mini-batch
        - epochs: number of epochs
        - learning_rate: learning rate
      - static_mode: how to utilize static features (concatenate or None)
      - time_mode: how to utilize time information (concatenate or None)
      - task: classification or regression
  '''
    #%% Step 0: Set basic parameters
    metric_parameters = {
        'problem': args.problem,
        'label_name': [args.label_name]
    }

    #%% Step 1: Upload Dataset
    # File names
    data_directory = '../datasets/data/' + args.data_name + '/' + args.data_name + '_'

    data_loader_training = CSVLoader(
        static_file=data_directory + 'static_train_data.csv.gz',
        temporal_file=data_directory + 'temporal_train_data_eav.csv.gz')

    data_loader_testing = CSVLoader(
        static_file=data_directory + 'static_test_data.csv.gz',
        temporal_file=data_directory + 'temporal_test_data_eav.csv.gz')

    dataset_training = data_loader_training.load()
    dataset_testing = data_loader_testing.load()

    print('Finish data loading.')

    #%% Step 2: Preprocess Dataset
    # (0) filter out negative values (Automatically)
    negative_filter = FilterNegative()
    # (1) one-hot encode categorical features
    onehot_encoder = OneHotEncoder(
        one_hot_encoding_features=[args.one_hot_encoding])
    # (2) Normalize features: 3 options (minmax, standard, none)
    normalizer = Normalizer(args.normalization)

    filter_pipeline = PipelineComposer(negative_filter, onehot_encoder,
                                       normalizer)

    dataset_training = filter_pipeline.fit_transform(dataset_training)
    dataset_testing = filter_pipeline.transform(dataset_testing)

    print('Finish preprocessing.')

    #%% Step 3: Define Problem
    problem_maker = ProblemMaker(problem=args.problem,
                                 label=[args.label_name],
                                 max_seq_len=args.max_seq_len,
                                 treatment=args.treatment)

    dataset_training = problem_maker.fit_transform(dataset_training)
    dataset_testing = problem_maker.fit_transform(dataset_testing)

    print('Finish defining problem.')

    #%% Step 4: Impute Dataset
    static_imputation = Imputation(
        imputation_model_name=args.static_imputation_model, data_type='static')
    temporal_imputation = Imputation(
        imputation_model_name=args.temporal_imputation_model,
        data_type='temporal')

    imputation_pipeline = PipelineComposer(static_imputation,
                                           temporal_imputation)

    dataset_training = imputation_pipeline.fit_transform(dataset_training)
    dataset_testing = imputation_pipeline.transform(dataset_testing)

    print('Finish imputation.')

    #%% Step 5: Feature selection (4 options)
    static_feature_selection = \
    FeatureSelection(feature_selection_model_name = args.static_feature_selection_model,
                     feature_type = 'static', feature_number = args.static_feature_selection_number,
                     task = args.task, metric_name = args.metric_name,
                     metric_parameters = metric_parameters)

    temporal_feature_selection = \
    FeatureSelection(feature_selection_model_name = args.temporal_feature_selection_model,
                     feature_type = 'temporal', feature_number = args.temporal_feature_selection_number,
                     task = args.task, metric_name = args.metric_name,
                     metric_parameters = metric_parameters)

    feature_selection_pipeline = PipelineComposer(static_feature_selection,
                                                  temporal_feature_selection)

    dataset_training = feature_selection_pipeline.fit_transform(
        dataset_training)
    dataset_testing = feature_selection_pipeline.transform(dataset_testing)

    print('Finish feature selection.')

    #%% Step 6: Fit and Predict (6 options)
    # Set predictor model parameters
    model_parameters = {
        'h_dim': args.h_dim,
        'n_layer': args.n_layer,
        'batch_size': args.batch_size,
        'epoch': args.epochs,
        'model_type': args.model_name,
        'learning_rate': args.learning_rate,
        'static_mode': args.static_mode,
        'time_mode': args.time_mode,
        'verbose': True
    }

    # Set the validation data for best model saving
    dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.0)

    active_sensing_class = active_sensing(args.active_sensing_model_name,
                                          model_parameters, args.task)
    active_sensing_class.fit(dataset_training)
    test_s_hat = active_sensing_class.predict(dataset_testing)

    print('Finish original predictor model training and testing.')

    #%% Step 7: Visualize Results
    idx = np.random.permutation(len(test_s_hat))[:2]

    # Visualize the output
    print('Future Measurements Recommendation')
    print_interpretation(test_s_hat[idx], dataset_testing.feature_name,
                         metric_parameters, model_parameters)

    return
Ejemplo n.º 2
0
df3 = df3.drop('HRBP Country', axis=1)

df3.info()
data_x = df3[:100]

for c in data_x.columns:
    if data_x[c].dtype == object:
        data_x[c] = data_x[c].fillna('Missing')
        print(c)
        data_x[c] = data_x[c].astype('category')
        #data_x[c] = data_x[c].cat.codes
    else:
        data_x[c] = data_x[c].fillna(-999)

data_x['Years of Service Buckets'] = data_x['Years of Service Buckets'].cat.codes


data_x_numeric = OneHotEncoder().fit_transform(data_x)

data_x_numeric.info()
print(data_x_numeric.head())

# sys.exit()


kmeans = KMeans(n_clusters=40)
kmeans.fit(data_x_numeric)
# print(kmeans.cluster_centers_)
print(kmeans.labels_)
print(np.array(BUHRs))
Ejemplo n.º 3
0
def main(args):
    '''Main function for AutoML in time-series predictions.
  
  Args:
    - data loading parameters:
      - data_names: mimic, ward, cf    
      
    - preprocess parameters: 
      - normalization: minmax, standard, None
      - one_hot_encoding: input features that need to be one-hot encoded
      - problem: 'one-shot' or 'online'
        - 'one-shot': one time prediction at the end of the time-series 
        - 'online': preditcion at every time stamps of the time-series
      - max_seq_len: maximum sequence length after padding
      - label_name: the column name for the label(s)
      - treatment: the column name for treatments
      
    - imputation parameters: 
      - static_imputation_model: mean, median, mice, missforest, knn, gain
      - temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain
            
    - feature selection parameters:
      - feature_selection_model: greedy-addtion, greedy-deletion, recursive-addition, recursive-deletion, None
      - feature_number: selected featuer number
      
    - predictor_parameters:
      - epochs: number of epochs
      - bo_itr: bayesian optimization iterations
      - static_mode: how to utilize static features (concatenate or None)
      - time_mode: how to utilize time information (concatenate or None)
      - task: classification or regression
      
    - metric_name: auc, apr, mae, mse
  '''
    #%% Step 0: Set basic parameters
    metric_sets = [args.metric_name]
    metric_parameters = {
        'problem': args.problem,
        'label_name': [args.label_name]
    }

    #%% Step 1: Upload Dataset
    # File names
    data_directory = '../datasets/data/' + args.data_name + '/' + args.data_name + '_'

    data_loader_training = CSVLoader(
        static_file=data_directory + 'static_train_data.csv.gz',
        temporal_file=data_directory + 'temporal_train_data_eav.csv.gz')

    data_loader_testing = CSVLoader(
        static_file=data_directory + 'static_test_data.csv.gz',
        temporal_file=data_directory + 'temporal_test_data_eav.csv.gz')

    dataset_training = data_loader_training.load()
    dataset_testing = data_loader_testing.load()

    print('Finish data loading.')

    #%% Step 2: Preprocess Dataset
    # (0) filter out negative values (Automatically)
    negative_filter = FilterNegative()
    # (1) one-hot encode categorical features
    onehot_encoder = OneHotEncoder(
        one_hot_encoding_features=[args.one_hot_encoding])
    # (2) Normalize features: 3 options (minmax, standard, none)
    normalizer = Normalizer(args.normalization)

    filter_pipeline = PipelineComposer(negative_filter, onehot_encoder,
                                       normalizer)

    dataset_training = filter_pipeline.fit_transform(dataset_training)
    dataset_testing = filter_pipeline.transform(dataset_testing)

    print('Finish preprocessing.')

    #%% Step 3: Define Problem
    problem_maker = ProblemMaker(problem=args.problem,
                                 label=[args.label_name],
                                 max_seq_len=args.max_seq_len,
                                 treatment=[args.treatment])

    dataset_training = problem_maker.fit_transform(dataset_training)
    dataset_testing = problem_maker.fit_transform(dataset_testing)

    print('Finish defining problem.')

    #%% Step 4: Impute Dataset
    static_imputation = Imputation(
        imputation_model_name=args.static_imputation_model, data_type='static')
    temporal_imputation = Imputation(
        imputation_model_name=args.temporal_imputation_model,
        data_type='temporal')

    imputation_pipeline = PipelineComposer(static_imputation,
                                           temporal_imputation)

    dataset_training = imputation_pipeline.fit_transform(dataset_training)
    dataset_testing = imputation_pipeline.transform(dataset_testing)

    print('Finish imputation.')

    #%% Step 5: Feature selection (4 options)
    static_feature_selection = \
    FeatureSelection(feature_selection_model_name = args.static_feature_selection_model,
                     feature_type = 'static', feature_number = args.static_feature_selection_number,
                     task = args.task, metric_name = args.metric_name,
                     metric_parameters = metric_parameters)

    temporal_feature_selection = \
    FeatureSelection(feature_selection_model_name = args.temporal_feature_selection_model,
                     feature_type = 'temporal', feature_number = args.temporal_feature_selection_number,
                     task = args.task, metric_name = args.metric_name,
                     metric_parameters = metric_parameters)

    feature_selection_pipeline = PipelineComposer(static_feature_selection,
                                                  temporal_feature_selection)

    dataset_training = feature_selection_pipeline.fit_transform(
        dataset_training)
    dataset_testing = feature_selection_pipeline.transform(dataset_testing)

    print('Finish feature selection.')

    #%% Step 6: Bayesian Optimization
    ## Model define

    model_parameters = {
        'projection_horizon': 5,
        'static_mode': 'concatenate',
        'time_mode': 'concatenate'
    }

    crn_model = CRN_Model(task=args.task)
    crn_model.set_params(**model_parameters)

    model_class = crn_model

    # train_validate split
    dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.2)

    # Bayesian Optimization Start
    metric = BOMetric(metric='auc', fold=0, split='test')

    # Run BO for selected model class
    BO_model = AutoTS(dataset_training, model_class, metric)
    models, bo_score = BO_model.training_loop(num_iter=2)
    auto_ens_model = AutoEnsemble(models, bo_score)

    # Prediction
    assert not dataset_testing.is_validation_defined
    test_y_hat = auto_ens_model.predict(dataset_testing, test_split='test')
    test_y = dataset_testing.label

    print('Finish AutoML model training and testing.')

    #%% Step 7: Visualize Results
    idx = np.random.permutation(len(test_y_hat))[:2]

    # Evaluate predictor model
    result = Metrics(metric_sets,
                     metric_parameters).evaluate(test_y, test_y_hat)
    print('Finish predictor model evaluation.')

    # Visualize the output
    # (1) Performance
    print('Overall performance')
    print_performance(result, metric_sets, metric_parameters)
    # (2) Predictions
    print('Each prediction')
    print_prediction(test_y_hat[idx], metric_parameters)

    return
Ejemplo n.º 4
0
    st.subheader('One-Hot Encoding')

    ohot_stat = st.multiselect(
        'Choose one or more static variables to one-hot encode:', cols_stat)

    if ohot_stat:
        st.sidebar.text('Encoding (stat): ' + (', ').join(ohot_stat) + '.')

    ohot_temp = st.multiselect(
        'Choose one or more temporal variables to one-hot encode:', cols_temp)

    if ohot_temp:
        st.sidebar.text('Encoding (temp): ' + (', ').join(ohot_temp) + '.')

    onehot_encoder = OneHotEncoder(one_hot_encoding_features=ohot_stat +
                                   ohot_temp)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Wrapper
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


@st.cache
def preprocess_dataset(
    dataset_t,
    dataset_v,
):
    if negative_filter:
        filter_pipeline = compose(
            FilterNegative().fit_transform,
            onehot_encoder.fit_transform,
def main(args):
    """Main function for AutoML in time-series predictions.
  
  Args:
    - data loading parameters:
      - data_names: mimic, ward, cf    
      
    - preprocess parameters: 
      - normalization: minmax, standard, None
      - one_hot_encoding: input features that need to be one-hot encoded
      - problem: 'one-shot' or 'online'
        - 'one-shot': one time prediction at the end of the time-series 
        - 'online': preditcion at every time stamps of the time-series
      - max_seq_len: maximum sequence length after padding
      - label_name: the column name for the label(s)
      - treatment: the column name for treatments
      
    - imputation parameters: 
      - static_imputation_model: mean, median, mice, missforest, knn, gain
      - temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain
            
    - feature selection parameters:
      - feature_selection_model: greedy-addition, greedy-deletion, recursive-addition, recursive-deletion, None
      - feature_number: selected featuer number
      
    - predictor_parameters:
      - epochs: number of epochs
      - bo_itr: bayesian optimization iterations
      - static_mode: how to utilize static features (concatenate or None)
      - time_mode: how to utilize time information (concatenate or None)
      - task: classification or regression
      
    - metric_name: auc, apr, mae, mse
  """
    #%% Step 0: Set basic parameters
    metric_sets = [args.metric_name]
    metric_parameters = {
        "problem": args.problem,
        "label_name": [args.label_name]
    }

    #%% Step 1: Upload Dataset
    # File names
    data_directory = "../datasets/data/" + args.data_name + "/" + args.data_name + "_"

    data_loader_training = CSVLoader(
        static_file=data_directory + "static_train_data.csv.gz",
        temporal_file=data_directory + "temporal_train_data_eav.csv.gz",
    )

    data_loader_testing = CSVLoader(
        static_file=data_directory + "static_test_data.csv.gz",
        temporal_file=data_directory + "temporal_test_data_eav.csv.gz",
    )

    dataset_training = data_loader_training.load()
    dataset_testing = data_loader_testing.load()

    print("Finish data loading.")

    #%% Step 2: Preprocess Dataset
    # (0) filter out negative values (Automatically)
    negative_filter = FilterNegative()
    # (1) one-hot encode categorical features
    onehot_encoder = OneHotEncoder(
        one_hot_encoding_features=[args.one_hot_encoding])
    # (2) Normalize features: 3 options (minmax, standard, none)
    normalizer = Normalizer(args.normalization)

    filter_pipeline = PipelineComposer(negative_filter, onehot_encoder,
                                       normalizer)

    dataset_training = filter_pipeline.fit_transform(dataset_training)
    dataset_testing = filter_pipeline.transform(dataset_testing)

    print("Finish preprocessing.")

    #%% Step 3: Define Problem
    problem_maker = ProblemMaker(problem=args.problem,
                                 label=[args.label_name],
                                 max_seq_len=args.max_seq_len,
                                 treatment=args.treatment)

    dataset_training = problem_maker.fit_transform(dataset_training)
    dataset_testing = problem_maker.fit_transform(dataset_testing)

    print("Finish defining problem.")

    #%% Step 4: Impute Dataset
    static_imputation = Imputation(
        imputation_model_name=args.static_imputation_model, data_type="static")
    temporal_imputation = Imputation(
        imputation_model_name=args.temporal_imputation_model,
        data_type="temporal")

    imputation_pipeline = PipelineComposer(static_imputation,
                                           temporal_imputation)

    dataset_training = imputation_pipeline.fit_transform(dataset_training)
    dataset_testing = imputation_pipeline.transform(dataset_testing)

    print("Finish imputation.")

    #%% Step 5: Feature selection (4 options)
    static_feature_selection = FeatureSelection(
        feature_selection_model_name=args.static_feature_selection_model,
        feature_type="static",
        feature_number=args.static_feature_selection_number,
        task=args.task,
        metric_name=args.metric_name,
        metric_parameters=metric_parameters,
    )

    temporal_feature_selection = FeatureSelection(
        feature_selection_model_name=args.temporal_feature_selection_model,
        feature_type="temporal",
        feature_number=args.temporal_feature_selection_number,
        task=args.task,
        metric_name=args.metric_name,
        metric_parameters=metric_parameters,
    )

    feature_selection_pipeline = PipelineComposer(static_feature_selection,
                                                  temporal_feature_selection)

    dataset_training = feature_selection_pipeline.fit_transform(
        dataset_training)
    dataset_testing = feature_selection_pipeline.transform(dataset_testing)

    print("Finish feature selection.")

    #%% Step 6: Bayesian Optimization
    ## Model define
    # RNN model
    rnn_parameters = {
        "model_type": "lstm",
        "epoch": args.epochs,
        "static_mode": args.static_mode,
        "time_mode": args.time_mode,
        "verbose": False,
    }

    general_rnn = GeneralRNN(task=args.task)
    general_rnn.set_params(**rnn_parameters)

    # CNN model
    cnn_parameters = {
        "epoch": args.epochs,
        "static_mode": args.static_mode,
        "time_mode": args.time_mode,
        "verbose": False,
    }
    temp_cnn = TemporalCNN(task=args.task)
    temp_cnn.set_params(**cnn_parameters)

    # Transformer
    transformer = TransformerPredictor(task=args.task,
                                       epoch=args.epochs,
                                       static_mode=args.static_mode,
                                       time_mode=args.time_mode)

    # Attention model
    attn_parameters = {
        "model_type": "lstm",
        "epoch": args.epochs,
        "static_mode": args.static_mode,
        "time_mode": args.time_mode,
        "verbose": False,
    }
    attn = Attention(task=args.task)
    attn.set_params(**attn_parameters)

    # model_class_list = [general_rnn, attn, temp_cnn, transformer]
    model_class_list = [general_rnn, attn]

    # train_validate split
    dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.1)

    # Bayesian Optimization Start
    metric = BOMetric(metric="auc", fold=0, split="test")

    ens_model_list = []

    # Run BO for each model class
    for m in model_class_list:
        BO_model = automl.model.AutoTS(dataset_training,
                                       m,
                                       metric,
                                       model_path="tmp/")
        models, bo_score = BO_model.training_loop(num_iter=args.bo_itr)
        auto_ens_model = AutoEnsemble(models, bo_score)
        ens_model_list.append(auto_ens_model)

    # Load all ensemble models
    for ens in ens_model_list:
        for m in ens.models:
            m.load_model(BO_model.model_path + "/" + m.model_id + ".h5")

    # Stacking algorithm
    stacking_ens_model = StackingEnsemble(ens_model_list)
    stacking_ens_model.fit(dataset_training, fold=0, train_split="val")

    # Prediction
    assert not dataset_testing.is_validation_defined
    test_y_hat = stacking_ens_model.predict(dataset_testing, test_split="test")
    test_y = dataset_testing.label

    print("Finish AutoML model training and testing.")

    #%% Step 7: Visualize Results
    idx = np.random.permutation(len(test_y_hat))[:2]

    # Evaluate predictor model
    result = Metrics(metric_sets,
                     metric_parameters).evaluate(test_y, test_y_hat)
    print("Finish predictor model evaluation.")

    # Visualize the output
    # (1) Performance
    print("Overall performance")
    print_performance(result, metric_sets, metric_parameters)
    # (2) Predictions
    print("Each prediction")
    print_prediction(test_y_hat[idx], metric_parameters)

    return
Ejemplo n.º 6
0
def main(args):
    '''Main function for individual treatment effect estimation.

  Args:
    - data loading parameters:
      - data_names: mimic, ward, cf, mimic_antibiotics

    - preprocess parameters:
      - normalization: minmax, standard, None
      - one_hot_encoding: input features that need to be one-hot encoded
      - problem: 'online'
        - 'online': preiction at every time stamps of the time-series
      - max_seq_len: maximum sequence length after padding
      - label_name: the column name for the label(s)
      - treatment: the column name for treatments

    - imputation parameters:
      - static_imputation_model: mean, median, mice, missforest, knn, gain
      - temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain

    - feature selection parameters:
      - feature_selection_model: greedy-addtion, greedy-deletion, recursive-addition, recursive-deletion, None
      - feature_number: selected featuer number

    - treatment effects model parameters:
      - model_name: CRN, RMSN, GANITE
      Each model has different types of hyperparameters that need to be set.

        - Parameters needed for the Counterfactual Recurrent Network (CRN):
          - hyperparameters for encoder:
              - rnn_hidden_units: hidden dimensions in the LSTM unit
              - rnn_keep_prob: keep probability used for variational dropout in the LSTM unit
              - br_size: size of the balancing representation
              - fc_hidden_units: hidden dimensions of the fully connected layers used for treatment classifier and predictor
              - batch_size: number of samples in mini-batch
              - num_epochs: number of epochs
              - learning_rate: learning rate
              - max_alpha: alpha controls the trade-off between building tratment invariant representations (domain
                discrimination) and being able to predict outcomes (outcome prediction); during training, CRN uses an
                exponentially increasing schedule for alpha from 0 to max_alpha.
          - hyperparameters for decoder:
              - the decoder requires the same hyperparameters as the encoder with the exception of the rnn_hidden_units
                which is set to be equal to the br_size of the encoder

        - Parameters for Recurrent Marginal Structural Networks (RMSN):
            - hyperparameters for encoder:
                - dropout_rate: dropout probability used for variational
                - rnn_hidden_units: hidden dimensions in the LSTM unit
                - batch_size: number of samples in mini-batch
                - num_epochs: number of epochs
                - learning_rate: learning rate
                - max_norm: max gradient norm used for gradient clipping during training
            - hyperparameters for decoder:
                - the decoder requires the same hyperparameters as the encoder.
            - model_dir: directory where the model is saved
            - model_name: name of the saved model

        - Parameters for GANITE:
          - batch size: number of samples in mini-batch
          - alpha: parameter trading off between discriminator loss and supervised loss for the generator training
          - learning_rate: learning rate
          - hidden_units: hidden dimensions of the fully connected layers used in the networks
          - stack_dim: number of timesteps to stack

        All models have the following common parameters:
          - static_mode: how to utilize static features (concatenate or None)
          - time_mode: how to utilize time information (concatenate or None)
          - taks: 'classification' or 'regression'


    - metric_name: auc, apr, mae, mse (used for factual prediction)
    - patient id: patient for which counterfactual trajectories are computed
    - timestep: timestep in patient trajectory for estimating counterfactuals
  '''
    # %% Step 0: Set basic parameters
    metric_sets = [args.metric_name]
    metric_parameters = {
        'problem': args.problem,
        'label_name': [args.label_name]
    }

    # %% Step 1: Upload Dataset
    # File names
    data_directory = '../datasets/data/' + args.data_name + '/' + args.data_name + '_'

    data_loader_training = CSVLoader(
        static_file=data_directory + 'static_train_data.csv.gz',
        temporal_file=data_directory + 'temporal_train_data_eav.csv.gz')

    data_loader_testing = CSVLoader(
        static_file=data_directory + 'static_test_data.csv.gz',
        temporal_file=data_directory + 'temporal_test_data_eav.csv.gz')

    dataset_training = data_loader_training.load()
    dataset_testing = data_loader_testing.load()

    print('Finish data loading.')

    # %% Step 2: Preprocess Dataset
    # (0) filter out negative values (Automatically)
    negative_filter = FilterNegative()
    # (1) one-hot encode categorical features
    onehot_encoder = OneHotEncoder(
        one_hot_encoding_features=[args.one_hot_encoding])
    # (2) Normalize features: 3 options (minmax, standard, none)
    normalizer = Normalizer(args.normalization)

    filter_pipeline = PipelineComposer(negative_filter, onehot_encoder,
                                       normalizer)

    dataset_training = filter_pipeline.fit_transform(dataset_training)
    dataset_testing = filter_pipeline.transform(dataset_testing)

    print('Finish preprocessing.')

    # %% Step 3: Define Problem
    problem_maker = ProblemMaker(problem=args.problem,
                                 label=[args.label_name],
                                 max_seq_len=args.max_seq_len,
                                 treatment=[args.treatment])

    dataset_training = problem_maker.fit_transform(dataset_training)
    dataset_testing = problem_maker.fit_transform(dataset_testing)

    print('Finish defining problem.')

    # %% Step 4: Impute Dataset
    static_imputation = Imputation(
        imputation_model_name=args.static_imputation_model, data_type='static')
    temporal_imputation = Imputation(
        imputation_model_name=args.temporal_imputation_model,
        data_type='temporal')

    imputation_pipeline = PipelineComposer(static_imputation,
                                           temporal_imputation)

    dataset_training = imputation_pipeline.fit_transform(dataset_training)
    dataset_testing = imputation_pipeline.transform(dataset_testing)

    print('Finish imputation.')

    # %% Step 5: Feature selection (4 options)
    static_feature_selection = \
      FeatureSelection(feature_selection_model_name=args.static_feature_selection_model,
                       feature_type='static', feature_number=args.static_feature_selection_number,
                       task=args.task, metric_name=args.metric_name,
                       metric_parameters=metric_parameters)

    temporal_feature_selection = \
      FeatureSelection(feature_selection_model_name=args.temporal_feature_selection_model,
                       feature_type='temporal', feature_number=args.temporal_feature_selection_number,
                       task=args.task, metric_name=args.metric_name,
                       metric_parameters=metric_parameters)

    feature_selection_pipeline = PipelineComposer(static_feature_selection,
                                                  temporal_feature_selection)

    dataset_training = feature_selection_pipeline.fit_transform(
        dataset_training)
    dataset_testing = feature_selection_pipeline.transform(dataset_testing)

    print('Finish feature selection.')

    # %% Step 6: Fit treatment effects (3 options)
    # Set the validation data for best model saving
    dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.0)

    # Set the treatment effects model
    model_name = args.model_name

    # Set treatment effects model parameters
    if model_name == 'CRN':
        model_parameters = {
            'encoder_rnn_hidden_units': args.crn_encoder_rnn_hidden_units,
            'encoder_br_size': args.crn_encoder_br_size,
            'encoder_fc_hidden_units': args.crn_encoder_fc_hidden_units,
            'encoder_learning_rate': args.crn_encoder_learning_rate,
            'encoder_batch_size': args.crn_encoder_batch_size,
            'encoder_keep_prob': args.crn_encoder_keep_prob,
            'encoder_num_epochs': args.crn_encoder_num_epochs,
            'encoder_max_alpha': args.crn_encoder_max_alpha,
            'decoder_br_size': args.crn_decoder_br_size,
            'decoder_fc_hidden_units': args.crn_decoder_fc_hidden_units,
            'decoder_learning_rate': args.crn_decoder_learning_rate,
            'decoder_batch_size': args.crn_decoder_batch_size,
            'decoder_keep_prob': args.crn_decoder_keep_prob,
            'decoder_num_epochs': args.crn_decoder_num_epochs,
            'decoder_max_alpha': args.crn_decoder_max_alpha,
            'projection_horizon': args.projection_horizon,
            'static_mode': args.static_mode,
            'time_mode': args.time_mode
        }
        treatment_model = treatment_effects_model(model_name,
                                                  model_parameters,
                                                  task='classification')
        treatment_model.fit(dataset_training)

    elif model_name == 'RMSN':
        hyperparams_encoder_iptw = {
            'dropout_rate': args.rmsn_encoder_dropout_rate,
            'memory_multiplier': args.rmsn_encoder_memory_multiplier,
            'num_epochs': args.rmsn_encoder_num_epochs,
            'batch_size': args.rmsn_encoder_batch_size,
            'learning_rate': args.rmsn_encoder_learning_rate,
            'max_norm': args.rmsn_encoder_max_norm
        }

        hyperparams_decoder_iptw = {
            'dropout_rate': args.rmsn_decoder_dropout_rate,
            'memory_multiplier': args.rmsn_decoder_memory_multiplier,
            'num_epochs': args.rmsn_decoder_num_epochs,
            'batch_size': args.rmsn_decoder_batch_size,
            'learning_rate': args.rmsn_decoder_learning_rate,
            'max_norm': args.rmsn_decoder_max_norm
        }

        model_parameters = {
            'hyperparams_encoder_iptw': hyperparams_encoder_iptw,
            'hyperparams_decoder_iptw': hyperparams_decoder_iptw,
            'model_dir': args.rmsn_model_dir,
            'model_name': args.rmsn_model_name,
            'static_mode': args.static_mode,
            'time_mode': args.time_mode
        }

        treatment_model = treatment_effects_model(model_name,
                                                  model_parameters,
                                                  task='classification')
        treatment_model.fit(dataset_training,
                            projection_horizon=args.projection_horizon)

    elif model_name == 'GANITE':
        hyperparams = {
            'batch_size': args.ganite_batch_size,
            'alpha': args.ganite_alpha,
            'hidden_dims': args.ganite_hidden_dims,
            'learning_rate': args.ganite_learning_rate
        }

        model_parameters = {
            'hyperparams': hyperparams,
            'stack_dim': args.ganite_stack_dim,
            'static_mode': args.static_mode,
            'time_mode': args.time_mode
        }

        treatment_model = treatment_effects_model(model_name,
                                                  model_parameters,
                                                  task='classification')
        treatment_model.fit(dataset_training)

    test_y_hat = treatment_model.predict(dataset_testing)

    print('Finish treatment effects model training and testing.')

    # %% Step 9: Visualize Results

    # Evaluate predictor model
    result = Metrics(metric_sets,
                     metric_parameters).evaluate(dataset_testing.label,
                                                 test_y_hat)
    print('Finish predictor model evaluation.')

    # Visualize the output
    # (1) Performance on estimating factual outcomes
    print('Overall performance on estimating factual outcomes')
    print_performance(result, metric_sets, metric_parameters)

    # (2) Counterfactual trajectories
    print('Counterfactual trajectories')
    if model_name in ['CRN', 'RMSN']:
        # Predict and visualize counterfactuals for the sequence of treatments indicated by the user
        # through the treatment_options. The lengths of each sequence of treatments needs to be projection_horizon + 1.
        treatment_options = np.array([[[1], [1], [1], [1], [1], [0]],
                                      [[0], [0], [0], [0], [1], [1]]])
        history, counterfactual_traj = treatment_model.predict_counterfactual_trajectories(
            dataset=dataset_testing,
            patient_id=args.patient_id,
            timestep=args.timestep,
            treatment_options=treatment_options)

        print_counterfactual_predictions(
            patient_history=history,
            treatment_options=treatment_options,
            counterfactual_predictions=counterfactual_traj)

    return
def main(args):
    """Main function for time-series prediction.
    
    Args:
        - data loading parameters:
            - data_names: mimic, ward, cf        
            
        - preprocess parameters: 
            - normalization: minmax, standard, None
            - one_hot_encoding: input features that need to be one-hot encoded
            - problem: 'one-shot' or 'online'
                - 'one-shot': one time prediction at the end of the time-series 
                - 'online': prediction at every time stamps of the time-series
            - max_seq_len: maximum sequence length after padding
            - label_name: the column name for the label(s)
            - treatment: the column name for treatments
            
        - imputation parameters: 
            - static_imputation_model: mean, median, mice, missforest, knn, gain
            - temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain
                        
        - feature selection parameters:
            - feature_selection_model: greedy-addition, greedy-deletion, recursive-addition, recursive-deletion, None
            - feature_number: selected feature number
            
        - predictor_parameters:
            - model_name: rnn, gru, lstm, attention, tcn, transformer
            - model_parameters: network parameters such as number of layers
                - h_dim: hidden dimensions
                - n_layer: layer number
                - n_head: head number (only for transformer model)
                - batch_size: number of samples in mini-batch
                - epochs: number of epochs
                - learning_rate: learning rate
            - static_mode: how to utilize static features (concatenate or None)
            - time_mode: how to utilize time information (concatenate or None)
            - task: classification or regression
            
        - uncertainty_model_name: uncertainty estimation model name (ensemble)
        - interpretation_model_name: interpretation model name (tinvase)
        - metric_name: auc, apr, mae, mse
    """
    #%% Step 0: Set basic parameters
    metric_sets = [args.metric_name]
    metric_parameters = {
        "problem": args.problem,
        "label_name": [args.label_name]
    }

    #%% Step 1: Upload Dataset
    # File names
    data_directory = "../datasets/data/" + args.data_name + "/" + args.data_name + "_"

    data_loader_training = CSVLoader(
        static_file=data_directory + "static_train_data.csv.gz",
        temporal_file=data_directory + "temporal_train_data_eav.csv.gz",
    )

    data_loader_testing = CSVLoader(
        static_file=data_directory + "static_test_data.csv.gz",
        temporal_file=data_directory + "temporal_test_data_eav.csv.gz",
    )

    dataset_training = data_loader_training.load()
    dataset_testing = data_loader_testing.load()

    print("Finish data loading.")

    #%% Step 2: Preprocess Dataset
    # (0) filter out negative values (Automatically)
    negative_filter = FilterNegative()
    # (1) one-hot encode categorical features
    onehot_encoder = OneHotEncoder(
        one_hot_encoding_features=[args.one_hot_encoding])
    # (2) Normalize features: 3 options (minmax, standard, none)
    normalizer = Normalizer(args.normalization)

    filter_pipeline = PipelineComposer(negative_filter, onehot_encoder,
                                       normalizer)

    dataset_training = filter_pipeline.fit_transform(dataset_training)
    dataset_testing = filter_pipeline.transform(dataset_testing)

    print("Finish preprocessing.")

    #%% Step 3: Define Problem
    problem_maker = ProblemMaker(problem=args.problem,
                                 label=[args.label_name],
                                 max_seq_len=args.max_seq_len,
                                 treatment=args.treatment)

    dataset_training = problem_maker.fit_transform(dataset_training)
    dataset_testing = problem_maker.fit_transform(dataset_testing)

    print("Finish defining problem.")

    #%% Step 4: Impute Dataset
    static_imputation = Imputation(
        imputation_model_name=args.static_imputation_model, data_type="static")
    temporal_imputation = Imputation(
        imputation_model_name=args.temporal_imputation_model,
        data_type="temporal")

    imputation_pipeline = PipelineComposer(static_imputation,
                                           temporal_imputation)

    dataset_training = imputation_pipeline.fit_transform(dataset_training)
    dataset_testing = imputation_pipeline.transform(dataset_testing)

    print("Finish imputation.")

    #%% Step 5: Feature selection (4 options)
    static_feature_selection = FeatureSelection(
        feature_selection_model_name=args.static_feature_selection_model,
        feature_type="static",
        feature_number=args.static_feature_selection_number,
        task=args.task,
        metric_name=args.metric_name,
        metric_parameters=metric_parameters,
    )

    temporal_feature_selection = FeatureSelection(
        feature_selection_model_name=args.temporal_feature_selection_model,
        feature_type="temporal",
        feature_number=args.temporal_feature_selection_number,
        task=args.task,
        metric_name=args.metric_name,
        metric_parameters=metric_parameters,
    )

    feature_selection_pipeline = PipelineComposer(static_feature_selection,
                                                  temporal_feature_selection)

    dataset_training = feature_selection_pipeline.fit_transform(
        dataset_training)
    dataset_testing = feature_selection_pipeline.transform(dataset_testing)

    print("Finish feature selection.")

    #%% Step 6: Fit and Predict (6 options)
    # Set predictor model parameters
    model_parameters = {
        "h_dim": args.h_dim,
        "n_layer": args.n_layer,
        "n_head": args.n_head,
        "batch_size": args.batch_size,
        "epoch": args.epochs,
        "model_type": args.model_name,
        "learning_rate": args.learning_rate,
        "static_mode": args.static_mode,
        "time_mode": args.time_mode,
        "verbose": True,
    }

    # Set the validation data for best model saving
    dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.0)

    pred_class = prediction(args.model_name, model_parameters, args.task)
    pred_class.fit(dataset_training)
    test_y_hat = pred_class.predict(dataset_testing)

    print("Finish predictor model training and testing.")

    #%% Step 7: Estimate Uncertainty (1 option)
    uncertainty_model = uncertainty(args.uncertainty_model_name,
                                    model_parameters, pred_class, args.task)
    uncertainty_model.fit(dataset_training)
    test_ci_hat = uncertainty_model.predict(dataset_testing)
    print("Finish uncertainty estimation")

    #%% Step 8: Interpret Predictions (1 option)
    interpretor = interpretation(args.interpretation_model_name,
                                 model_parameters, pred_class, args.task)
    interpretor.fit(dataset_training)
    test_s_hat = interpretor.predict(dataset_testing)
    print("Finish model interpretation")

    #%% Step 9: Visualize Results
    idx = np.random.permutation(len(test_y_hat))[:2]

    # Evaluate predictor model
    result = Metrics(metric_sets,
                     metric_parameters).evaluate(dataset_testing.label,
                                                 test_y_hat)
    print("Finish predictor model evaluation.")

    # Visualize the output
    # (1) Performance
    print("Overall performance")
    print_performance(result, metric_sets, metric_parameters)
    # (2) Predictions
    print("Each prediction")
    print_prediction(test_y_hat[idx], metric_parameters)
    # (3) Uncertainty
    print("Uncertainty estimations")
    print_uncertainty(test_y_hat[idx], test_ci_hat[idx], metric_parameters)
    # (4) Model interpretation
    print("Model interpretation")
    print_interpretation(test_s_hat[idx], dataset_training.feature_name,
                         metric_parameters, model_parameters)

    return