Ejemplo n.º 1
0
    trained_model, optimizer, criterion, loss_hist, loss_val_hist = train_classifier.run_train(
        n_epochs=n_epochs, lr=learning_rate, batch_size=batch_size)
    pre.save_results(loss_hist, loss_val_hist, f'{model_name}')

    #get parameters get the paramteres fro the last time forwads was called
    #since at the end of traning we check the accuracy of the train data, the pasarmeter have a size of all the train data
    detected_patterns = model.get_detected_patterns1()
    for idx in range(10):
        plt.figure(1, figsize=(20, 10))
        for p in range(trained_model.n_patterns1):
            pattern = detected_patterns[idx][p].reshape(
                detected_patterns.shape[2], detected_patterns.shape[3])
            patern_np = pattern.detach().numpy().reshape(8, 8)
            plt.subplot(2, 3, 1 + p)
            plt.imshow(patern_np, cmap='hot', interpolation='none')
        pre.save_plt_as_image(plt, f'patterns1_{idx}')

    detected_patterns = model.get_detected_patterns2()
    for idx in range(10):
        plt.figure(1, figsize=(20, 20))
        for p in range(trained_model.n_patterns2):
            pattern = detected_patterns[idx][p].reshape(
                detected_patterns.shape[2], detected_patterns.shape[3])
            patern_np = pattern.detach().numpy().reshape(4, 4)
            plt.subplot(4, 4, 1 + p)
            plt.imshow(patern_np, cmap='hot', interpolation='none')
        pre.save_plt_as_image(plt, f'patterns2_{idx}')

    if args.s_model:
        m_exporter = ModelExporter('digits')
        m_exporter.save_nn_model(trained_model, optimizer, 0, n_classes,
Ejemplo n.º 2
0
    plt.figure(1, figsize=(20, 10))
    for idx in range(30):
        image = X_test[idx].detach().numpy().reshape(16, 16)
        image2 = X_test_encoded[idx].detach().numpy().reshape(
            int(math.sqrt(n_features_encoded)),
            int(math.sqrt(n_features_encoded)))
        image3 = X_test_decoded[idx].detach().numpy().reshape(16, 16)
        # Call signature: subplot(nrows, ncols, index, **kwargs)
        plt.subplot(10, 9, 1 + idx * 3)
        plt.imshow(image, cmap='hot', interpolation='none')
        plt.subplot(10, 9, 2 + idx * 3)
        plt.imshow(image2, cmap='winter', interpolation='none')
        plt.subplot(10, 9, 3 + idx * 3)
        plt.imshow(image3, cmap='winter', interpolation='none')

    pre.save_plt_as_image(plt, f'encoded_{n_features_encoded}')

    #for idx in range(30):
    #    plt.figure(1, figsize=(10, 5))
    #    plt.subplot(1, 3, 1)
    #    X_test_np = X_test[idx].detach().numpy().reshape(16, 16)
    #    plt.imshow(X_test_np, cmap='hot', interpolation='none')
    #
    #    plt.subplot(1, 3, 2)
    #    test_num_np = X_test_encoded[idx].detach().numpy().reshape(int(math.sqrt(n_features_encoded)), int(math.sqrt(n_features_encoded)))
    #    plt.imshow(test_num_np, cmap='hot', interpolation='none')
    #
    #    plt.subplot(1, 3, 3)
    #    X_test_decoded_np = X_test_decoded[idx].detach().numpy().reshape(16, 16)
    #    plt.imshow(X_test_decoded_np, cmap='hot', interpolation='none')
    #
    model = m_importer.load_nn_model(model_name, 0, 10, 100)

    image = model.reshape_data(torch.tensor(img_array, device=device, dtype=dtype))
    y_test = torch.tensor(int(args.num), device=device, dtype=torch.long)

    y_pred = model(image).argmax(1)

    accuracy_soft = (y_pred == y_test).float().mean()

    print(f'number predicted {y_pred.item()}')

    pre = Preprocessing('digits')

    detected_patterns = model.get_detected_patterns1()
    plt.figure(1, figsize=(20, 10))
    for p in range(model.n_patterns1):
        pattern = detected_patterns[0][p].reshape(detected_patterns.shape[2], detected_patterns.shape[3])
        patern_np = pattern.detach().numpy().reshape(8, 8)
        plt.subplot(2, 3, 1 + p)
        plt.imshow(patern_np, cmap='hot', interpolation='none')
    pre.save_plt_as_image(plt, f'written_number {args.num}_patterns')


    detected_patterns = model.get_detected_patterns2()
    plt.figure(1, figsize=(20, 20))
    for p in range(model.n_patterns2):
        pattern = detected_patterns[0][p].reshape(detected_patterns.shape[2], detected_patterns.shape[3])
        patern_np = pattern.detach().numpy().reshape(4, 4)
        plt.subplot(4, 4, 1 + p)
        plt.imshow(patern_np, cmap='hot', interpolation='none')
    pre.save_plt_as_image(plt, f'written_number {args.num}_patterns2')
Ejemplo n.º 4
0
            print(t, loss.item())

    print(time.time() - start)

    y_pred = model(X_train).argmax(1)
    accuracy_soft = (y_pred == y_train.long()).float().mean()
    print(f'training accuracy: {accuracy_soft}')

    print(f'optimal iteration: {acc_val.index(max(acc_val))}')

    title = f'train_acc_val_acc_vs_iter_{n_iter}'
    plt.figure(1)
    plt.plot(acc_train)
    plt.plot(acc_val)
    plt.title = title
    pre.save_plt_as_image(plt, title)
    plt.close()

    title = f'train_loss_val_loss_vs_iter_{n_iter}'
    plt.figure(2)
    plt.plot(loss_hist)
    plt.plot(loss_val_hist)
    plt.title = title
    pre.save_plt_as_image(plt, title)

    #plt.show()

    if args.s_model:
        name = f'custom_{n_features}.pt'
        pre.save_model(model, name=name)
        #torch.save(model, name)