Ejemplo n.º 1
0
#!/usr/bin/env python
from __future__ import print_function
import sys
from presto import prepfold

if len(sys.argv) == 1:
    sys.stderr.write("""usage:  pfd_for_timing.py PFDFILES\n
    This script returns 'true' or 'false' if a .pfd file can be
    used for timing via get_TOAs.py or not.\n""")
    sys.exit(0)

for pfdfile in sys.argv[1:]:
    try:
        pfd = prepfold.pfd(pfdfile)
        if pfd.use_for_timing():
            print("%s: true" % pfdfile)
        else:
            print("%s: false" % pfdfile)
    except:
        sys.stderr.write("Error:  Can't check '%s'\n" % pfdfile)
Ejemplo n.º 2
0
            for subs in a.split(','):
                if (subs.find("-") > 0):
                    lo, hi = subs.split("-")
                    kill.extend(list(range(int(lo), int(hi)+1)))
                else:
                    kill.append(int(subs))
        if o in ("-i", "--kints"):
            for ints in a.split(','):
                if (ints.find("-") > 0):
                    lo, hi = ints.split("-")
                    kints.extend(list(range(int(lo), int(hi)+1)))
                else:
                    kints.append(int(ints))

    # Read the prepfold output file and the binary profiles
    fold_pfd = pfd(sys.argv[-1])

    # Check to make sure we can use this .pfd for timing purposes
    if not fold_pfd.use_for_timing():
        sys.stderr.write(
            "Error: '%s' was made allowing prepfold to search!\n" % \
            sys.argv[-1])
        sys.exit(2)
    
    # Read key information from the bestprof file
    if fold_pfd.bestprof:
        fold = fold_pfd.bestprof
    else:
        sys.stderr.write(
            "Error:  Can't open '%s.bestrof'!  Regenerate with show_pfd.\n" % \
            sys.argv[-1])
Ejemplo n.º 3
0
def calc_features_from_pfd(pfd_filepath):

    pfd_data = prepfold.pfd(str(pfd_filepath))

    if pfd_filepath.parent.name == 'positive':
        label = 1
    elif pfd_filepath.parent.name == 'negative':
        label = 0
    else:
        label = -1
        # return (label, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        #     np.empty(shape=(0,)), np.empty(shape=(0,0)),
        #     np.empty(shape=(0,0)), np.empty(shape=(0,)))

    pfd_data.dedisperse()

    #### As done in: prepfold.pfd.plot_sumprofs
    profile = pfd_data.sumprof
    profile = normalise_1d(profile)
    ####

    profiles_sum_axis0 = pfd_data.profs.sum(0)

    #### As done in: prepfold.pfd.plot_chi2_vs_DM
    loDM = 0
    hiDM = pfd_data.numdms
    N = pfd_data.numdms
    profs = profiles_sum_axis0.copy()  # = pfd_data.profs.sum(0)
    DMs = psr_utils.span(loDM, hiDM, N)
    chis = np.zeros(N, dtype='f')
    subdelays_bins = pfd_data.subdelays_bins.copy()
    for ii, DM in enumerate(DMs):
        subdelays = psr_utils.delay_from_DM(DM, pfd_data.barysubfreqs)
        hifreqdelay = subdelays[-1]
        subdelays = subdelays - hifreqdelay
        delaybins = subdelays * pfd_data.binspersec - subdelays_bins
        new_subdelays_bins = np.floor(delaybins + 0.5)
        for jj in range(pfd_data.nsub):
            profs[jj] = psr_utils.rotate(profs[jj],
                                         int(new_subdelays_bins[jj]))
        subdelays_bins += new_subdelays_bins
        sumprof = profs.sum(0)
        chis[ii] = pfd_data.calc_redchi2(prof=sumprof, avg=pfd_data.avgprof)
    ####

    # best_dm = pfd_data.bestdm
    # crop_radius = 100
    # best_dm_index = np.searchsorted(DMs, best_dm)  # Not accurate, but close.
    # bloated_chis = np.insert(chis, N, np.full(crop_radius, chis[-1]))
    # bloated_chis = np.insert(bloated_chis, 0, np.full(crop_radius, chis[0]))
    # cropped_chis = bloated_chis[ best_dm_index : best_dm_index+2*crop_radius ]
    # chis = cropped_chis

    #### As done in: prepfold.pfd.plot_intervals
    intervals = pfd_data.profs.sum(1)
    intervals = normalise_2d_rowwise(intervals)
    ####

    #### As done in: prepfold.pfd.plot_subbands
    subbands = profiles_sum_axis0.copy()  # = pfd_data.profs.sum(0)
    subbands = normalise_2d_rowwise(subbands)
    ####

    return label, profile, intervals, subbands, chis
Ejemplo n.º 4
0
    sumprof = Num.zeros(numbins, dtype='d')

    base_T = None
    base_BW = None
    orig_fctr = None
    Tprerfi = 0.0
    Tpostrfi = 0.0
    avg_S = 0.0

    # Step through the profiles and determine the offsets
    for pfdfilenm, killsubs, killints in zip(pfdfilenms, killsubss, killintss):

        print("\n  Processing '%s'..." % pfdfilenm)

        # Read the fold data and de-disperse at the requested DM
        current_pfd = pfd(pfdfilenm)
        current_pfd.dedisperse(DM)
        # This corrects for any searching that prepfold did to find the peak
        current_pfd.adjust_period()
        T = current_pfd.T
        Tprerfi += T
        BW = current_pfd.nsub * current_pfd.subdeltafreq
        fctr = current_pfd.lofreq + 0.5 * BW

        # If there are subbands to kill, kill em'
        if killsubs is not None:
            print("    killing subbands:  ", killsubs)
            current_pfd.kill_subbands(killsubs)
            BW *= (current_pfd.nsub - len(killsubs)) / float(current_pfd.nsub)
        # If there are intervals to kill, kill em'
        if killints is not None:
Ejemplo n.º 5
0
    def __init__(self,
                 pfdfile,
                 pointingfile,
                 profilefile=None,
                 offpulse=None,
                 autoroll=True):
        """
        OTF_Scan(pfdfile, pointingfile, profilefile=None, offpulse=None, autoroll=True)

        create an OTF_Scan object
        needs a pfd file and a pointing file (a Table which has columns OFFS_SUB, RA_SUB, DEC_SUB)

        if specified will also read in a file with the results of pygaussfit to determine the profile

        offpulse will be pairs [min,max] where min and max are limits of phase window (phase is 0->1)

        if autoroll, will roll the profile to center the pulse (makes some edge effects easier)

        """
        self.pfd = pfd(pfdfile)
        self.pfdfile = pfdfile
        self.pointing = Table.read(pointingfile)
        self.pointingfile = pointingfile
        self.RA = Longitude(
            np.interp(self.pfd.mid_secs, self.pointing["OFFS_SUB"],
                      self.pointing["RA_SUB"]) * u.deg)
        self.Dec = Latitude(
            np.interp(self.pfd.mid_secs, self.pointing["OFFS_SUB"],
                      self.pointing["DEC_SUB"]) * u.deg)
        # is it a RA scan or Dec scan
        if (self.RA.max() - self.RA.min()) * np.cos(self.Dec.mean()) > (
                self.Dec.max() - self.Dec.mean()):
            self.scantype = "RA"
            self.offset = (self.RA - self.RA.mean()) * np.cos(self.Dec.mean())
        else:
            self.scantype = "Dec"
            self.offset = self.Dec - self.Dec.mean()

        self.freq = (self.pfd.hifreq + self.pfd.lofreq) / 2 * u.MHz
        if self.pfd.telescope == "GBT":
            self.diameter = 100 * u.m
        else:
            self.diameter = None

        if profilefile is not None:
            self.profile = PulseProfile(profilefile)
        else:
            self.profile = None

        # Axis 0 = subints, axis 1 = channels, axis 2 = phase bins
        self.pfd.dedisperse()
        self.subints = np.arange(self.pfd.profs.shape[0])
        self.channels = np.arange(self.pfd.profs.shape[1])
        self.phasebins = np.arange(self.pfd.profs.shape[2])
        self.phases = self.phasebins / (len(self.phasebins))
        self.rollvalue = 0

        # basic preparation
        # define off-pulse window
        self.set_offpulse(offpulse)
        # determine the bandpass
        self.get_bandpass()
        # remove the bandpass
        self.apply_bandpass()
        # remove the variable sub-integration power
        self.remove_subintpower()
        # roll the pulse to center it (if desired)
        if autoroll:
            self.autoroll()

        # fit a pulse profile if it is not already set
        if self.profile is None:
            self.profile = PulseProfile.fit_gaussian_profile(
                self.phases, np.nanmean(self.squeezed_profs, axis=0))