def plot_learning_curves(num_points, X_train, Y_train, X_test, Y_test, positive_class=1, negative_class=0): train_set_sizes = [len(X_train) / k for k in range(num_points + 1, 0, -1)] test_errors = [] training_errors = [] for training_set_size in train_set_sizes: model = train(X_train, Y_train, training_set_size) test_error = evaluate(model, X_test, Y_test, positive_class, negative_class) training_error = evaluate(model, X_train, Y_train, positive_class, negative_class) test_errors.append(test_error) training_errors.append(training_error) plt.plot(train_set_sizes, training_errors, 'bs-', label='Training accuracy') plt.plot(train_set_sizes, test_errors, 'g^-', label='Test accuracy') plt.ylabel('Accuracy') plt.xlabel('Number of training samples') plt.title('Augmented Logistic Regression Learning Curve') plt.legend(loc='lower right') plt.savefig('../Figures/accuracyPlotAugmented.png', dpi=100) pylab.show()
def plot_sdss(cat_path): for catfile in find_files(cat_path, "*merged+sdss.txt"): # for now ignore the channel 2 files if catfile.split('/')[-1].split('_')[1] != '1': continue print("\nreading catalog: {}".format(catfile)) df = pd.read_table(catfile, sep=' ') # get rid of negative flux sources, if any df = df[df.flux > 0] # convert to magnitudes mags = spz_jy_to_mags(df.flux * 1e-3, 1) # print counts per magnitude bin for i in range(10, 15): sc = ((df.cl == 3) & (mags > i) & (mags < i + 1)).sum() xc = ((df.xsc == 1) & (mags > i) & (mags < i + 1)).sum() msg = "{}th to {}th mag: {} SDSS galaxy sources, {} 2MASS XSC sources" print(msg.format(i, i + 1, sc, xc)) # print number of sources agreed upon agree = ((df.xsc == 1) & (df.cl == 3)).sum() disagree = ((df.xsc == 1) & (df.cl == 6)).sum() na = ((df.xsc == 1) & (df.cl == 0)).sum() msg = "{} 2MASS XSC sources classified as galaxies by SDSS" print(msg.format(agree)) msg = "{} 2MASS XSC sources classified as stars by SDSS" print(msg.format(disagree)) msg = "{} 2MASS XSC sources not matched to SDSS" print(msg.format(na)) # plot normed histograms of 2MASS XSC and SDSS galaxy magnitudes xsc_gals = (mags > 10) & (mags < 15) & (df.xsc == 1) sdss_gals = (mags > 10) & (mags < 15) & (df.cl == 3) # mags[xsc_gals].hist(label='2MASS XSC', normed=True) # mags[sdss_gals].hist(label='SDSS galaxies', normed=True) plt.hist([mags[xsc_gals].values, mags[sdss_gals].values], bins=5, label=['2MASS', 'SDSS']) plt.xlabel('IRAC1 [mag]') plt.ylabel('Number Count') reg = catfile.split('/')[-1].split('_')[0] plt.title('{} Extended Sources / Galaxies'.format(reg)) plt.legend(loc=2) name = '{}_2mass_xsc_vs_sdss_hist.png'.format(reg) outpath = '/'.join(catfile.split('/')[:-1] + [name]) plt.savefig(outpath, dpi=100) plt.close() print("created file: {}".format(outpath))
def plot_sdss(cat_path): for catfile in find_files(cat_path, "*merged+sdss.txt"): # for now ignore the channel 2 files if catfile.split('/')[-1].split('_')[1] != '1': continue print("\nreading catalog: {}".format(catfile)) df = pd.read_table(catfile, sep=' ') # get rid of negative flux sources, if any df = df[df.flux > 0] # convert to magnitudes mags = spz_jy_to_mags(df.flux*1e-3, 1) # print counts per magnitude bin for i in range(10,15): sc = ((df.cl == 3) & (mags > i) & (mags < i+1)).sum() xc = ((df.xsc == 1) & (mags > i) & (mags < i+1)).sum() msg = "{}th to {}th mag: {} SDSS galaxy sources, {} 2MASS XSC sources" print(msg.format(i, i+1, sc, xc)) # print number of sources agreed upon agree = ((df.xsc == 1) & (df.cl == 3)).sum() disagree = ((df.xsc == 1) & (df.cl == 6)).sum() na = ((df.xsc == 1) & (df.cl == 0)).sum() msg = "{} 2MASS XSC sources classified as galaxies by SDSS" print(msg.format(agree)) msg = "{} 2MASS XSC sources classified as stars by SDSS" print(msg.format(disagree)) msg = "{} 2MASS XSC sources not matched to SDSS" print(msg.format(na)) # plot normed histograms of 2MASS XSC and SDSS galaxy magnitudes xsc_gals = (mags > 10) & (mags < 15) & (df.xsc == 1) sdss_gals = (mags > 10) & (mags < 15) & (df.cl == 3) # mags[xsc_gals].hist(label='2MASS XSC', normed=True) # mags[sdss_gals].hist(label='SDSS galaxies', normed=True) plt.hist([mags[xsc_gals].values, mags[sdss_gals].values], bins=5, label=['2MASS', 'SDSS']) plt.xlabel('IRAC1 [mag]') plt.ylabel('Number Count') reg = catfile.split('/')[-1].split('_')[0] plt.title('{} Extended Sources / Galaxies'.format(reg)) plt.legend(loc=2) name = '{}_2mass_xsc_vs_sdss_hist.png'.format(reg) outpath = '/'.join(catfile.split('/')[:-1]+[name]) plt.savefig(outpath, dpi=100) plt.close() print("created file: {}".format(outpath))
def submit_time_histogram(arr): """ Use Matplotlib to plot a normalized histogram of submit times """ from math import ceil, log try: import matplotlib.mlab as mlab from prettyplotlib import plt except ImportError: print( 'You must have Matplotlib and Prettyplotlib installed to plot a histogram.' ) # Use Sturges' formula for number of bins: k = ceiling(log2 n + 1) k = ceil(log(len(arr), 2) + 1) n, bins, patches = plt.hist(arr, k, normed=1, facecolor='green', alpha=0.75) # throw a PDF plot on top of it #y = mlab.normpdf(bins, np.mean(arr), np.std(arr)) #l = plt.plot(bins, y, 'r--', linewidth=1) # Get a Bayesian confidence interval for mean, variance, standard deviation dmean, dvar, dsd = bayes_mvs(deltas) # drop a line in at the mean for fun plt.axvline(dmean[0], color='blue', alpha=0.5) plt.axvspan(dmean[1][0], dmean[1][1], color='blue', alpha=0.5) plt.axvline(np.median(deltas), color='y', alpha=0.5) # Caclulate a Kernel Density Estimate density = gaussian_kde(deltas) xs = np.arange(0., np.max(deltas), 0.1) density.covariance_factor = lambda: .25 density._compute_covariance() plt.plot(xs, density(xs), color='m') #FIXME: come up with better legend names #plt.legend(('Normal Curve', 'Mean', 'Median', 'KDE')) plt.legend(('Mean', 'Median', 'KDE')) plt.xlabel('Submit Times (in Seconds)') plt.ylabel('Probability') plt.title('Histogram of Worker submit times') plt.grid(True) plt.show()
def layerActivations(model, data, labels): print('Visualizing activations with tSNE...') if not os.path.exists(cc.cfg['plots']['layer_activations_dir']): os.makedirs(cc.cfg['plots']['layer_activations_dir']) numLabels = cc.cfg['plots']['layer_activations_label_cap'] data = data[:cc.cfg['plots']['layer_activations_points_cap']] labels = labels[:numLabels,:cc.cfg['plots']['layer_activations_points_cap']] subplotCols = numLabels subplotRows = len(model.layers)-1 subplotIdx = 1 plt.figure(figsize=(5*subplotCols,5*subplotRows)) for i in range(1,len(model.layers)): print('Running tSNE for layer {}/{}'.format(i+1,len(model.layers))) func = K.function([model.layers[0].input], [model.layers[i].output]) out = func([data])[0] tsneModel = TSNE(n_components = 2, random_state = 0) tsneOut = tsneModel.fit_transform(out).T # labeledTsneOut = np.hstack((tsneOut, labels[0].reshape(-1,1))) for j in range(numLabels): plt.subplot(subplotRows, subplotCols, subplotIdx) plt.title('{} / {}'.format(model.layers[i].name,cc.exp['params']['data']['labels'][j])) plt.scatter(tsneOut[0],tsneOut[1],c=labels[j],cmap = 'plasma') subplotIdx += 1 # tsneDF = pd.DataFrame(labeledTsneOut, columns = ('a', 'b', 'c')) # plot = tsneDF.plot.scatter(x = 'a', y = 'b', c = 'c', cmap = 'plasma') plt.tight_layout() plt.savefig('{}/activations.png'.format(cc.cfg['plots']['layer_activations_dir'])) plt.close() print('...done')
def histograms(modelLogger): if not cc.cfg['plots']['histograms']: return if not os.path.exists(cc.cfg['plots']['histograms_dir']): os.makedirs(cc.cfg['plots']['histograms_dir']) cntEpochs = len(modelLogger.epochLogs) cntLayers = len(modelLogger.epochLogs[-1]['weights']) logVals = [ {'name':'weights','color':'blue'}, {'name':'updates','color':'red'}, {'name':'ratios','color':'green'} ] subplotRows = len(logVals) subplotCols = cntLayers for x in range(cntEpochs): subplotIdx = 1 plt.figure(figsize=(5*subplotCols,5*subplotRows)) plt.suptitle('Histograms per layer, epoch {}/{}'.format(x,cntEpochs-1), fontsize=14) for logVal in logVals: for i,layer in enumerate(modelLogger.epochLogs[x][logVal['name']]): histmin = layer.min() histmax = layer.max() plt.subplot(subplotRows, subplotCols, subplotIdx) plt.title('{}, {}'.format(modelLogger.model.layers[modelLogger.loggedLayers[i]].name,logVal['name'])) plt.hist(layer, range = (histmin, histmax), bins = 30, color = logVal['color']) subplotIdx+=1 plt.tight_layout() plt.subplots_adjust(top=0.9) plt.savefig('{}/hist_{e:03d}.png'.format(cc.cfg['plots']['histograms_dir'], e = x)) plt.close()
def hero_stats_bar(self, thresh): ''' Creates a bar chart of the heroes with highest Wins / #Games played ratio ''' # Create individual hero wins and losses self.hero_stats() fig, ax = plt.subplots(1, figsize=(9, 7)) # Compute the ratio of #Wins to the #Games played by that hero # Most relevant statistic, better than W/L Ratio, better than # just wins, all of them can be statistically insignificant # in edge cases, but this can be the least of all val = [ (k, self.wstat[k] / float(self.dstat[k] + self.wstat[k])) for k in self.wstat if self.wstat[k] / float(self.dstat[k] + self.wstat[k]) >= thresh ] plt.title('Hero ID vs. Win Ratio (Matches from 01/23 - 02/24)') plt.xlabel('Hero ID') plt.ylabel('Win Ratio') ax.set_xlim([0, len(val)]) ann = [round(k[1], 2) for k in val] # Extract the xticklabels xtl = [k[0] for k in val] # Extract the individual values to be plotted val = [k[1] for k in val] ppl.bar(ax, np.arange(len(val)), val, annotate=ann, xticklabels=xtl, grid='y', color=ppl.colors.set2[2]) fig.savefig('../Figures/HIDvs#Wins#Games.png') plt.show() plt.clf()
for x in range(count): data[locat].append(value) print("data") for i in data: print(i[:10]) print("data") #np.random.seed(10) #data = np.random.randn(8, 4) u_labels = ['1e-7 mid','1e-7 end','1e-6 mid','1e-6 end','1e-5 mid','1e-5 end','1e-4 mid','1e-4 end','0.001 mid','0.001 end','0.005 mid','0.005 end','0.01 mid','0.01 end',\ '0.05 mid', '0.05 end','0.1 mid','0.1 end'] fig, ax = plt.subplots() ax.set_xticklabels(u_labels) ax.set_xticks(u_labels) ax.set_xlabel('Initial Mutation Rates', fontsize=9) ax.set_ylabel('End Proliferation Rates', fontsize=9) i = 0 print(ax.get_xticklabels()) ppl.boxplot(ax, data) #,xticklabels=u_labels) plt.title("Distribution of End Proliferation Rates by Initial Mutation Rate", fontsize=9) fig.savefig(opt.output + '_boxplot.png') print(opt.output + "DONE") #ppl.hist(ax,data) #fig.savefig('histogram_prettyplotlib_default.png')
alphas = data[2] eps = data[0] delta = 0.1 string = [r'$\tau\delta$ = %.2f' % float(delta*t) for t in taus] #string2 = [r'$\tau$ = '+str(data[3][i]) for i in range(5)] maxmmse = np.max(eps) #maxf = np.max(data[1]) def f(x): ppl.plot(alphas,eps[:,x]/maxmmse,label=string[x],ax=ax1) # ax2.plot(data[2],data[1][:,x]/maxf,label=string2[x]) #plt.close() #plt.figure() #ax1 = plt.gcf().add_subplot(1,1,1) fig, ax1 = ppl.subplots(1) plt.title(r'MMSE for a Reconstruction Task with Adaptive Neurons') #ax2 = plt.gcf().add_subplot(1,2,2) #plt.title(r'Firing rate of adaptive code') map(f,range(0,10,2)) ppl.legend(ax1) #ax2.legend() ax1.set_xlabel(r'$\alpha$') ax1.set_ylabel(r'MMSE') #ax2.set_xlabel(r'$\alpha$') #ax2.set_ylabel(r'Firing Rate') #plt.xlabel(r'Tuning width $\alpha$') #plt.ylabel(r'MMSE') plt.show() #plt.savefig("mmse_discrimination.png",dpi=600) plt.savefig("figure_5_8.png",dpi=600) plt.savefig("figure_5_8.eps")
y = eta**2/(2*gamma) print nd, " of ",len(deltas) for nphi,phi in enumerate(phis): fun = lambda x: f(x,gamma,eta,phi,alpha,thetas,tau,delta) y = opt.fsolve(fun, y) epss[nd,nphi] = y/(eta**2/(2*gamma)) ls[nd,nphi] = lambdabar(thetas,gamma,eta,phi,alpha,tau,delta) strings = [r'$\tau\delta$ = '+str(i*tau) for i in deltas] #f = lambda i : plt.plot(alphas,epss[i,:],label=strings[i]) #map(f,range(len(deltas))) fig, ax = ppl.subplots(1,figsize=(7,7)) ppl.plot(ls[0,:],epss[0,:],label = strings[0], ax=ax) ppl.plot(ls[1,:],epss[1,:],label = strings[1], ax=ax) ppl.plot(ls[2,:],epss[2,:],label = strings[2], ax=ax) ppl.plot(ls[3,:],epss[3,:],label = strings[3], ax=ax) ppl.plot(ls[4,:],epss[4,:],label = strings[4], ax=ax) np.savez("../data/mean_field_ratedist.npz", eps = epss, ls=ls, phis = phis, deltas = deltas, tau = tau) ax.set_xlim([0.0,25.0]) ax.set_xlabel(r'$\lambda$ in spikes/sec') ax.set_ylabel(r'MMSE/$\epsilon_0$') plt.title("Rate-Distortion Curve for Adaptive Neurons") ppl.legend(ax) plt.savefig("rate_distortion_mf_alpha.png") plt.savefig("rate_distortion_mf_alpha.eps") plt.show()
observation = pm.Poisson("obs", lambda_, value=datos, observed=True) model = pm.Model([observation, lambda_1, lambda_2, tau]) mcmc = pm.MCMC(model) mcmc.sample(50000, 10000, 1) lambda_1_samples = mcmc.trace('lambda_1')[:] lambda_2_samples = mcmc.trace('lambda_2')[:] tau_samples = mcmc.trace('tau')[:] fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1) plt.rc('font', **{'family': 'DejaVu Sans'}) plt.subplot(311) plt.title(u'''Distribución posterior de las variables $\lambda_1,\;\lambda_2,\;tau$''') plt.hist(lambda_1_samples, histtype="stepfilled", bins=30, alpha=0.85, normed=True) plt.xlim([150000,250000]) plt.xlabel("valor de $\lambda_1$") plt.subplot(312) #ax.set_autoscaley_on(False) plt.hist(lambda_2_samples, histtype="stepfilled", bins=30, alpha=0.85, normed=True) plt.xlim([150000,250000]) plt.xlabel("valor de $\lambda_2$") plt.tick_params(axis="both", which="mayor", labelsize=4) plt.subplot(313)
for a, b in zip(midd, data): new_data.append(a) new_data.append(b) print(new_data[:1]) u_labels = [ '1e-7', '1e-7 end', '1e-6', '1e-6 end', '1e-5', '1e-5 end', '1e-4', '1e-4 end', '0.001', '0.001 end', '0.005', '0.005 end', '0.01', '0.01 end' ] fig, ax = plt.subplots() ax.set_xticklabels(u_labels, rotation='vertical', fontsize=9) #ax.set_xticks(u_labels) ax.set_yscale('log') ax.set_xlabel('Initial Mutation Rates', fontsize=9) ax.set_ylabel(opt.ty + ' Proliferation Rates', fontsize=9) i = 0 print(ax.get_xticklabels()) ppl.boxplot(ax, new_data) #,xticklabels=u_labels) plt.title("Distribution of " + opt.ty + " proliferation rates categorised by initial mutation rate", fontsize=9) fig.savefig(opt.output + 'pro_boxplot.png') print(opt.output + "DONE") #ppl.hist(ax,data) #fig.savefig('histogram_prettyplotlib_default.png')
ax1.plot(times,s,'r',label = 'True Sate') #m = np.average(particles,weights=weights,axis=1) #st = np.std(particles,weights=weights,axis=1) #ext = (0.0,dt*timewindow,code.neurons[-1].theta,code.neurons[0].theta) #plt.imshow(rates.T,extent=ext,cmap = cm.gist_yarg,aspect = 'auto',interpolation ='nearest') thetas = [code.neurons[i].theta for i in sptrain] ax1.plot(times[sptimes],thetas,'yo',label='Observed Spikes') ax1.plot(times,m,'b',label='Posterior Mean') ax1.plot(times,m-st,'gray',times,m+st,'gray') #ax2 = plt.gcf().add_subplot(1,2,2) #ax2.plot(times,s) plt.xlabel('Time (in seconds)') plt.ylabel('Space (in cm)') plt.legend() plt.title('State Estimation in a Diffusion System') if plotting: #matplotlib.rcParams['font.size']=10 if gaussian: fig, (ax1,ax2) = ppl.subplots(1,2,figsize = (12,6)) else: fig, ax2 = ppl.subplots(1) times = np.arange(0.0,dt*timewindow,dt) if gaussian: if sum(sum(spsg)) !=0: (ts,neurs) = np.where(spsg == 1)
for ftype, fsize in size.items(): sys.stderr.write('{} files contain {} bytes over {} files\n'.format(ftype.upper(), sum(fsize), len(files[ftype]))) ### # To upload to the correct spot on S3 # gzip *.paths # s3cmd put --acl-public *.paths.gz s3://aws-publicdatasets/common-crawl/crawl-data/CC-MAIN-YYYY-WW/ ### # Plot for ftype, fsize in size.items(): if not fsize: continue plt.hist(fsize, bins=50) plt.xlabel('Size (bytes)') plt.ylabel('Count') plt.title('Distribution for {}'.format(ftype.upper())) plt.savefig(prefix + '{}_dist.pdf'.format(ftype)) #plt.show(block=True) plt.close() ### # Find missing WAT / WET files warc = set([x.strip() for x in open(prefix + 'warc.paths').readlines()]) wat = [x.strip() for x in open(prefix + 'wat.paths').readlines()] wat = set([x.replace('.warc.wat.', '.warc.').replace('/wat/', '/warc/') for x in wat]) # Work out the missing files and segments missing = sorted(warc - wat) missing_segments = defaultdict(list) for fn in missing: start, suffix = fn.split('/warc/') segment = start.split('/')[-1]
def run_xsc_phot(bcdphot_out_path, mosaic_path): replaced = {} for cat in find_files(bcdphot_out_path, "*_combined_hdr_catalog.txt"): print("\n======================================================") print("\nadjusting photometry in: {}".format(cat.split('/')[-1])) print("------------------------------------------------------") outpath = cat.replace('combined_hdr_catalog.txt','2mass_xsc.tbl') # retrieve 2mass data if file doesn't already exist (from previous run) if not os.path.isfile(outpath): # get url and retrieve data url = query_2mass_xsc_polygon(*get_region_corners(cat)) print("\ndownloading 2MASS photometry from: {}".format(url)) text = urllib2.urlopen(url).read() # write to disk with open(outpath, 'w') as f: f.write(text) print("\ncreated file: {}".format(outpath)) # read back in as recarray print("\nreading: {}".format(outpath)) names = open(outpath).read().split('\n')[76].split('|')[1:-1] da = np.recfromtxt(outpath, skip_header=80, names=names) # write input file for xsc_phot.pro infile_outpath = '/'.join(cat.split('/')[:-1])+'/xsc.txt' with open(infile_outpath,'w') as w: for i in range(da.shape[0]): w.write("{} {} {} {}\n".format(da.designation[i], da.ra[i], da.dec[i], da.r_ext[i])) print("\ncreated input file for xsc_phot.pro: {}".format(infile_outpath)) # locate the FITS mosaic file for xsc_phot.pro to do photometry on reg, ch = cat.split('/')[-1].split('_')[:2] mosaicfile = filter(lambda x: 'dirbe{}/ch{}/long/full/Combine'\ .format(reg,ch) in x, find_files(mosaic_path, '*mosaic.fits'))[0] print("\nfound mosaic file: {}".format(mosaicfile)) # spawn IDL subprocess running xsc_phot.pro and catch stdout in file outpath = infile_outpath.replace('xsc.txt', 'xsc_phot_out.txt') if not os.path.isfile(outpath): outfile = open(outpath,'w') print("\nspawning xsc_phot.pro IDL subprocess") cmd = "xsc_phot,'"+mosaicfile+"','"+infile_outpath+"','long'" rc = subprocess.call(['/usr/local/itt/idl71/bin/idl','-quiet','-e',cmd], stderr = subprocess.PIPE, stdout = outfile) outfile.close() # read in output to recarray print("\nreading: {}".format(outpath)) phot = np.recfromtxt(outpath, names=['id','flux','unc','sky','skyunc']) # make sure rows are aligned assert (da.designation == phot.id).all() # ignore xsc sources we got a NaN or negative flux for bad = np.isnan(phot.flux) | (phot.flux < 0) print("\naper.pro returned NaN or negative flux for {} sources".format(bad.sum())) if bad.sum() > 0: for i in phot[bad].id: print(i) outpath = cat.replace('combined_hdr_catalog.txt','xsc_nan_phot.csv') with open(outpath,'w') as f: w = csv.writer(f) w.writerow(da.dtype.names) w.writerows(da[bad].tolist()) print('\ncreated file: {}'.format(outpath)) phot = phot[~bad] da = da[~bad] # read in pipeline catalog print("\nreading: {}".format(cat)) names = open(cat).readline().split()[1:] c = np.recfromtxt(cat, names=names) # loop through xsc sources and find matches in pipeline catalog print("\nfinding records associated with XSC sources in pipeline catalog") c_flux_total = [] n_in_aper = [] c_idx = [] coords = radec_to_coords(c.ra, c.dec) kdt = KDT(coords) for i in range(phot.size): radius = da.r_ext[i]/3600. # idx1, idx2, ds = spherematch(da.ra[i], da.dec[i], # c.ra, c.dec, tolerance=radius) idx, ds = spherematch2(da.ra[i], da.dec[i], c.ra, c.dec, kdt, tolerance=radius, k=500) # c_flux_total.append(c.flux[idx2].sum()) # n_in_aper.append(c.flux[idx2].size) # c_idx.append(idx2.tolist()) c_flux_total.append(c.flux[idx].sum()) n_in_aper.append(ds.size) c_idx.append(idx.tolist()) print("\nhistogram of source counts in r_ext aperture") for i in [(i,n_in_aper.count(i)) for i in set(n_in_aper)]: print i # create new version of catalog file with xsc-associated entries replaced c_idx = np.array(flatten(c_idx)) print("\nremoving {}, adding {}".format(c_idx.size, phot.size)) replaced[cat] = {'old':c_idx.size, 'new':phot.size} replaced[cat]['hist'] = [(i,n_in_aper.count(i)) for i in set(n_in_aper)] c = np.delete(c, c_idx) newrows = np.rec.array([(-i, da.ra[i], da.dec[i], phot.flux[i], phot.unc[i], 1) for i in \ range(phot.size)], dtype=c.dtype) newcat = np.hstack((c, newrows)) # write new version of catalog to disk fmt = ['%i']+['%0.8f']*2+['%.4e']*2+['%i'] outpath = cat.replace('catalog.txt', 'catalog_xsc_cor.txt') np.savetxt(outpath, newcat, fmt = fmt, header = ' '.join(names)) print('\ncreated file: {}'.format(outpath)) # make plot of total old vs. new flux plt.scatter(c_flux_total, phot.flux) ylim = plt.gca().get_ylim() plt.xlim(*ylim) max_y = ylim[1] plt.plot(ylim, ylim, 'r-') plt.xlabel('old flux [mJy]') plt.ylabel('new flux [mJy]') name = ' '.join(cat.split('/')[-1].split('_')[:2]) plt.title(name) outpath = cat.replace('combined_hdr_catalog.txt','xsc_new_vs_old_phot.png') plt.savefig(outpath, dpi=200) plt.close() print('\ncreated file: {}'.format(outpath)) outfile = 'xsc_replaced.json' json.dump(replaced, open(outfile,'w')) print("\ncreated file: {}".format(outfile)) print("\nremoved / added") for k,v in replaced.iteritems(): print k.split('/')[-1], v['old'], v['new'] m = np.mean([i['old']/float(i['new']) for i in replaced.values()]) print("average ratio: {}".format(m)) print("\nK mag and r_ext of sources with NaN photometry:") for i in find_files(bcdphot_out_path, "*xsc_nan_phot.csv"): reg = i.split('/')[-1] rec = np.recfromcsv(i) bad_id = rec.designation.tolist() bad_k = rec.k_m_k20fe.tolist() bad_r_ext = rec.r_ext.tolist() print reg print ("\tid\t\t\tKmag\tr_ext") if type(bad_id) is list: seq = sorted(zip(bad_id, bad_k, bad_r_ext), key=lambda x: x[0]) for j,k,l in seq: print("\t{}\t{}\t{}".format(j,k,l)) else: print("\t{}\t{}\t{}".format(bad_id, bad_k, bad_r_ext))
X.append(i + 1) Y.append(err) incr_orthoY.append(check_orthogonality(uL[i])) incr_ortho.append(['iSVD u={}'.format(num), X, incr_orthoY]) plt.plot(X, Y, label='iSVD u={}'.format(num)) """ print 'Testing raw SVD => exact reconstruction' svT = scipy.linalg.diagsvd(s, u.shape[0], vT.shape[1]).dot(vT) for y in xrange(train.shape[0]): for x in xrange(train.shape[1]): colU = u[y, :] rowV = svT[:, x] assert np.allclose(train[y, x], single_dot(u, svT, x, y)) """ ## plt.title('SVD reconstruction error on {}x{} matrix'.format(*train.shape)) plt.xlabel('Low rank approximation (k)') plt.ylabel('Frobenius norm') plt.ylim(0, max(svdY)) plt.legend(loc='best') plt.savefig('reconstruct_fro_{}x{}.pdf'.format(*train.shape)) plt.show(block=True) ## plt.plot(orthoX, orthoY, label="SVD", color='black', linewidth=2, linestyle='--') for label, X, Y in incr_ortho: plt.plot(X, Y, label=label)
width = 0.5 font = {'family' : 'normal', 'weight' : 'normal', 'size' : 10} # k c b m r o char vals = [ 45174 , 48810 , 41719 , 255017 , 642090 , 3053979 , 3066135 , 1731655 , 582226 , 126045 , 6738 ] total = float(sum(vals)) print(vals) vals = [(i / total)*100 for i in vals] print(vals) colors = ['LightGray','Gray','LightSkyBlue','RoyalBlue','LightSeaGreen','MediumSeaGreen','Khaki',\ 'Goldenrod','Tomato','MediumVioletRed','DarkViolet'] #plt.bar(ind, vals, width) ppl.bar(ax, ind, vals, color=colors) plt.xticks(ind+width/2.,\ ('1e-7','1e-6','1e-5','1e-4','0.001','0.005','0.01', '0.05', '0.1', '0.2', '0.5')\ ,fontsize=11) plt.yticks(fontsize=11) plt.title("Distribution of cells by mutation rate across resistant populations",fontsize=11) #plt.ylim((0,100)) plt.ylabel("Percent of Total",fontsize=11) plt.xlabel("Initial Mutation rate: u",fontsize=11) plt.savefig(opt.filename+"_bar") plt.clf() ###
svdY = [] u, s, vT = scipy.linalg.svd(train) for k in xrange(1, 100): low_s = [s[i] for i in xrange(k)] # + (min(u.shape[0], vT.shape[1]) - k) * [0] print 'Exact SVD with low-rank approximation {}'.format(k) svdX.append(k) svdY.append(get_error(u, np.diag(low_s), vT, train, test)) plt.plot(svdX, svdY, label="SVD", color='black', linewidth='2', linestyle='--') """ print print 'Testing incremental SVD' for num in xrange(400, 1001, 300): print '... with block size of {}'.format(num) X, Y = [], [] for k in xrange(1, 91, 10): print k u, s, vT = incremental_SVD(train, k, num) X.append(k) Y.append(get_error(u, s, vT, train, test, prod_avg)) plt.plot(X, Y, label='iSVD u={}'.format(num)) ## plt.title( 'Recommendation system RMSE on {}x{} matrix'.format(*train.shape)) plt.xlabel('Low rank approximation (k)') plt.ylabel('Root Mean Squared Error') #plt.ylim(0, max(svdY)) plt.legend(loc='best') plt.savefig('recommend_rmse_{}x{}.pdf'.format(*train.shape)) plt.show(block=True)
observation = pm.Poisson("obs", lambda_, value=datos, observed=True) model = pm.Model([observation, lambda_1, lambda_2, tau]) mcmc = pm.MCMC(model) mcmc.sample(50000, 10000, 1) lambda_1_samples = mcmc.trace('lambda_1')[:] lambda_2_samples = mcmc.trace('lambda_2')[:] tau_samples = mcmc.trace('tau')[:] fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1) plt.rc('font', **{'family': 'DejaVu Sans'}) plt.subplot(311) plt.title(u'''Distribución posterior de las variables $\lambda_1,\;\lambda_2,\;tau$''') plt.hist(lambda_1_samples, histtype="stepfilled", bins=30, alpha=0.85, normed=True) plt.xlim([150000, 250000]) plt.xlabel("valor de $\lambda_1$") plt.subplot(312) #ax.set_autoscaley_on(False) plt.hist(lambda_2_samples, histtype="stepfilled", bins=30, alpha=0.85, normed=True)
## import sys if __name__ == '__main__': # Accumulate the counts fed into standard in (stdin) counts = [] for line in sys.stdin: topic, count = line.split() # Shift the ones up by a tiny amount to allow them to be visible on the graph counts.append(int(count) + 0.05) print 'Total page view counts: {}'.format(len(counts)) # Display the hourly page view distribution on a log-log plot # This matches our friendly and well understood Zipf distribution fig = plt.figure(figsize=(9, 5)) ax = fig.add_subplot(1, 1, 1) plt.plot(xrange(len(counts)), counts, linewidth=3, label='Pageviews per page') # ax.set_xscale('log') ax.set_yscale('log') # plt.title('Log-log plot of hourly Wikipedia page view distribution') plt.xlabel('Rank order') plt.ylabel('Frequency') plt.grid(color='black') plt.legend() # plt.savefig('hourly_wikipedia_zipf.pdf') plt.show(block=True)
def run_xsc_phot(bcdphot_out_path, mosaic_path): replaced = {} for cat in find_files(bcdphot_out_path, "*_combined_hdr_catalog.txt"): print("\n======================================================") print("\nadjusting photometry in: {}".format(cat.split('/')[-1])) print("------------------------------------------------------") outpath = cat.replace('combined_hdr_catalog.txt', '2mass_xsc.tbl') # retrieve 2mass data if file doesn't already exist (from previous run) if not os.path.isfile(outpath): # get url and retrieve data url = query_2mass_xsc_polygon(*get_region_corners(cat)) print("\ndownloading 2MASS photometry from: {}".format(url)) text = urllib2.urlopen(url).read() # write to disk with open(outpath, 'w') as f: f.write(text) print("\ncreated file: {}".format(outpath)) # read back in as recarray print("\nreading: {}".format(outpath)) names = open(outpath).read().split('\n')[76].split('|')[1:-1] da = np.recfromtxt(outpath, skip_header=80, names=names) # write input file for xsc_phot.pro infile_outpath = '/'.join(cat.split('/')[:-1]) + '/xsc.txt' with open(infile_outpath, 'w') as w: for i in range(da.shape[0]): w.write("{} {} {} {}\n".format(da.designation[i], da.ra[i], da.dec[i], da.r_ext[i])) print( "\ncreated input file for xsc_phot.pro: {}".format(infile_outpath)) # locate the FITS mosaic file for xsc_phot.pro to do photometry on reg, ch = cat.split('/')[-1].split('_')[:2] mosaicfile = filter(lambda x: 'dirbe{}/ch{}/long/full/Combine'\ .format(reg,ch) in x, find_files(mosaic_path, '*mosaic.fits'))[0] print("\nfound mosaic file: {}".format(mosaicfile)) # spawn IDL subprocess running xsc_phot.pro and catch stdout in file outpath = infile_outpath.replace('xsc.txt', 'xsc_phot_out.txt') if not os.path.isfile(outpath): outfile = open(outpath, 'w') print("\nspawning xsc_phot.pro IDL subprocess") cmd = "xsc_phot,'" + mosaicfile + "','" + infile_outpath + "','long'" rc = subprocess.call( ['/usr/local/itt/idl71/bin/idl', '-quiet', '-e', cmd], stderr=subprocess.PIPE, stdout=outfile) outfile.close() # read in output to recarray print("\nreading: {}".format(outpath)) phot = np.recfromtxt(outpath, names=['id', 'flux', 'unc', 'sky', 'skyunc']) # make sure rows are aligned assert (da.designation == phot.id).all() # ignore xsc sources we got a NaN or negative flux for bad = np.isnan(phot.flux) | (phot.flux < 0) print("\naper.pro returned NaN or negative flux for {} sources".format( bad.sum())) if bad.sum() > 0: for i in phot[bad].id: print(i) outpath = cat.replace('combined_hdr_catalog.txt', 'xsc_nan_phot.csv') with open(outpath, 'w') as f: w = csv.writer(f) w.writerow(da.dtype.names) w.writerows(da[bad].tolist()) print('\ncreated file: {}'.format(outpath)) phot = phot[~bad] da = da[~bad] # read in pipeline catalog print("\nreading: {}".format(cat)) names = open(cat).readline().split()[1:] c = np.recfromtxt(cat, names=names) # loop through xsc sources and find matches in pipeline catalog print( "\nfinding records associated with XSC sources in pipeline catalog" ) c_flux_total = [] n_in_aper = [] c_idx = [] coords = radec_to_coords(c.ra, c.dec) kdt = KDT(coords) for i in range(phot.size): radius = da.r_ext[i] / 3600. # idx1, idx2, ds = spherematch(da.ra[i], da.dec[i], # c.ra, c.dec, tolerance=radius) idx, ds = spherematch2(da.ra[i], da.dec[i], c.ra, c.dec, kdt, tolerance=radius, k=500) # c_flux_total.append(c.flux[idx2].sum()) # n_in_aper.append(c.flux[idx2].size) # c_idx.append(idx2.tolist()) c_flux_total.append(c.flux[idx].sum()) n_in_aper.append(ds.size) c_idx.append(idx.tolist()) print("\nhistogram of source counts in r_ext aperture") for i in [(i, n_in_aper.count(i)) for i in set(n_in_aper)]: print i # create new version of catalog file with xsc-associated entries replaced c_idx = np.array(flatten(c_idx)) print("\nremoving {}, adding {}".format(c_idx.size, phot.size)) replaced[cat] = {'old': c_idx.size, 'new': phot.size} replaced[cat]['hist'] = [(i, n_in_aper.count(i)) for i in set(n_in_aper)] c = np.delete(c, c_idx) newrows = np.rec.array([(-i, da.ra[i], da.dec[i], phot.flux[i], phot.unc[i], 1) for i in \ range(phot.size)], dtype=c.dtype) newcat = np.hstack((c, newrows)) # write new version of catalog to disk fmt = ['%i'] + ['%0.8f'] * 2 + ['%.4e'] * 2 + ['%i'] outpath = cat.replace('catalog.txt', 'catalog_xsc_cor.txt') np.savetxt(outpath, newcat, fmt=fmt, header=' '.join(names)) print('\ncreated file: {}'.format(outpath)) # make plot of total old vs. new flux plt.scatter(c_flux_total, phot.flux) ylim = plt.gca().get_ylim() plt.xlim(*ylim) max_y = ylim[1] plt.plot(ylim, ylim, 'r-') plt.xlabel('old flux [mJy]') plt.ylabel('new flux [mJy]') name = ' '.join(cat.split('/')[-1].split('_')[:2]) plt.title(name) outpath = cat.replace('combined_hdr_catalog.txt', 'xsc_new_vs_old_phot.png') plt.savefig(outpath, dpi=200) plt.close() print('\ncreated file: {}'.format(outpath)) outfile = 'xsc_replaced.json' json.dump(replaced, open(outfile, 'w')) print("\ncreated file: {}".format(outfile)) print("\nremoved / added") for k, v in replaced.iteritems(): print k.split('/')[-1], v['old'], v['new'] m = np.mean([i['old'] / float(i['new']) for i in replaced.values()]) print("average ratio: {}".format(m)) print("\nK mag and r_ext of sources with NaN photometry:") for i in find_files(bcdphot_out_path, "*xsc_nan_phot.csv"): reg = i.split('/')[-1] rec = np.recfromcsv(i) bad_id = rec.designation.tolist() bad_k = rec.k_m_k20fe.tolist() bad_r_ext = rec.r_ext.tolist() print reg print("\tid\t\t\tKmag\tr_ext") if type(bad_id) is list: seq = sorted(zip(bad_id, bad_k, bad_r_ext), key=lambda x: x[0]) for j, k, l in seq: print("\t{}\t{}\t{}".format(j, k, l)) else: print("\t{}\t{}\t{}".format(bad_id, bad_k, bad_r_ext))
#data = np.random.randn(8, 4) u_labels = [ '1e-7', '1e-6', '1e-5', '1e-4', '0.001', '0.005', '0.01', '0.05', '0.1' ] fig, ax = plt.subplots() ax.set_xticklabels(u_labels) ax.set_xticks(u_labels) ax.set_xlabel('Initial Mutation Rates', fontsize=9) ax.set_ylabel('End Time', fontsize=9) ax.set_yscale('log') i = 0 print(ax.get_xticklabels()) ppl.boxplot(ax, data) #,xticklabels=u_labels) t = [ "time taken to reach full size", "time taken until crash", "time taken until recovery" ] tt = ["pre", "crash", "post"] plt.title("distribution of " + t[j] + " categorised by mutation rate", fontsize=9) fig.savefig(opt.output + tt[j] + '_boxplot.png') print(opt.output + "DONE") #ppl.hist(ax,data) #fig.savefig('histogram_prettyplotlib_default.png')
X.append(i + 1) Y.append(err) incr_orthoY.append(check_orthogonality(uL[i])) incr_ortho.append(['iSVD u={}'.format(num), X, incr_orthoY]) plt.plot(X, Y, label='iSVD u={}'.format(num)) """ print 'Testing raw SVD => exact reconstruction' svT = scipy.linalg.diagsvd(s, u.shape[0], vT.shape[1]).dot(vT) for y in xrange(train.shape[0]): for x in xrange(train.shape[1]): colU = u[y, :] rowV = svT[:, x] assert np.allclose(train[y, x], single_dot(u, svT, x, y)) """ ## plt.title('SVD reconstruction error on {}x{} matrix'.format(*train.shape)) plt.xlabel('Low rank approximation (k)') plt.ylabel('Frobenius norm') plt.ylim(0, max(svdY)) plt.legend(loc='best') plt.savefig('reconstruct_fro_{}x{}.pdf'.format(*train.shape)) plt.show(block=True) ## plt.plot(orthoX, orthoY, label="SVD", color='black', linewidth=2, linestyle='--') for label, X, Y in incr_ortho: plt.plot(X, Y, label=label) plt.title('SVD orthogonality error on {}x{} matrix'.format(*train.shape)) plt.xlabel('Low rank approximation (k)') plt.ylabel('Deviation from orthogonality') plt.semilogy() #plt.ylim(0, max(orthoY))
svdX = [] svdY = [] u, s, vT = scipy.linalg.svd(train) for k in xrange(1, 100): low_s = [s[i] for i in xrange(k)] # + (min(u.shape[0], vT.shape[1]) - k) * [0] print 'Exact SVD with low-rank approximation {}'.format(k) svdX.append(k) svdY.append(get_error(u, np.diag(low_s), vT, train, test)) plt.plot(svdX, svdY, label="SVD", color='black', linewidth='2', linestyle='--') """ print print 'Testing incremental SVD' for num in xrange(400, 1001, 300): print '... with block size of {}'.format(num) X, Y = [], [] for k in xrange(1, 91, 10): print k u, s, vT = incremental_SVD(train, k, num) X.append(k) Y.append(get_error(u, s, vT, train, test, prod_avg)) plt.plot(X, Y, label='iSVD u={}'.format(num)) ## plt.title('Recommendation system RMSE on {}x{} matrix'.format(*train.shape)) plt.xlabel('Low rank approximation (k)') plt.ylabel('Root Mean Squared Error') #plt.ylim(0, max(svdY)) plt.legend(loc='best') plt.savefig('recommend_rmse_{}x{}.pdf'.format(*train.shape)) plt.show(block=True)