Ejemplo n.º 1
0
def fast_sum_divisors(n):
    product = 1
    for factor, power in prime_factors(n, 'dictionary').items():
        term = 1
        for i in range(1, power + 1):
            term += factor**i
        product *= term
    return product - n
Ejemplo n.º 2
0
def phi(n, limit=None):
    idx = n - 1
    f = prime_factors(n, 'set')
    if limit and len(f) > limit: return n // 2
    for i in range(len(f)):
        multiplier = [-1, 1]
        c = c_prod(f, i + 1)
        for x in c:
            idx += (n // x - 1) * multiplier[i % 2]
    return idx
Ejemplo n.º 3
0
def m_primes(n):
    f = set(prime_factors(n))
    m = []
    for i in range(1, n):
        for p in f:
            if not i % p:
                break
        else:
            m.append(i)
        # if not set(prime_factors(i)) & f:
    return m
Ejemplo n.º 4
0
def fracs(n):
    factors = prime_factors(n)
    start = ceil(n / 3)
    end = n // 2
    for i in range(start, end+1):
        if i == 1:
            yield 1
            continue
        if i in primes and n % i:
            yield i
            continue
        for f in factors:
            if i % f == 0:
                break
        else:
            yield i
Ejemplo n.º 5
0
def phi(n):
    f = prime_factors(n)
    if len(f) == 1:
        cache[n] = n-1
        return n-1
    family = product(set(f))
    if family > 1 and family in cache:
        cache[n] = cache[family] * n // family
        return cache[n]

    f = set(f)
    idx = n - 1
    for i in range(len(f)):
        multiplier = [-1, 1]
        c = c_prod(f, i+1)
        for x in c:
            idx += (n//x - 1) * multiplier[i%2]
    cache[n] = idx
    return idx
Ejemplo n.º 6
0
def first_tri_num_with_more_than_n_factors(n):
    for tri_number in triangular(None):
        if 2**len(prime_factors(tri_number)) >= n:
            if len(all_factors(tri_number, include_self=True)) > n:
                return tri_number
Ejemplo n.º 7
0
from primesandfactors import prime_factors
from generators import miller_rabin_range
from benchmark import benchmark
from numpy import array

lowest_factorial_multiple = lambda n: max( ( f(v, k) for k, v in prime_factors(n, 'dictionary').items() ) )

def f(n, b):
    m = n
    total = 0
    while n > 0:
        i, e = 0, 0
        while True:
            x = b**e
            if i + x > n: break
            i += x
            e += 1
        n -= i
        total += x
    return total

@benchmark()
def run(n):
    done = array( [True] * (n+1) )
    total = count = 0
    for prime in miller_rabin_range(n+1):
        y = min(n//prime, prime)
        total += prime * (y-1)
        for x in range(1, y):
            done[prime*x] = False
        count += 1
Ejemplo n.º 8
0
def run2(num):
    n = 1
    for p in primes2(num):
        n *= p
        ph = phi(n)
        print(p, ph, prime_factors(ph))