Ejemplo n.º 1
0
def main():

    with DefaultScopeDevice(CPUDevice()):
        pw1 = Parameter("w1", [8, 2], I.XavierUniform())
        pb1 = Parameter("b1", [8], I.Constant(0))
        pw2 = Parameter("w2", [1, 8], I.XavierUniform())
        pb2 = Parameter("b2", [], I.Constant(0))

        trainer = T.SGD(0.1)

        trainer.add_parameter(pw1)
        trainer.add_parameter(pb1)
        trainer.add_parameter(pw2)
        trainer.add_parameter(pb2)

        input_data = np.array(
            [
                [1, 1],  # Sample 1
                [1, -1],  # Sample 2
                [-1, 1],  # Sample 3
                [-1, -1],  # Sample 4
            ],
            dtype=np.float32)

        output_data = np.array(
            [
                1,  # Label 1
                -1,  # Label 2
                -1,  # Label 3
                1,  # Label 4
            ],
            dtype=np.float32)

        for i in range(100):
            g = Graph()
            with DefaultScopeGraph(g):
                # Builds a computation graph.
                #x = F.input(shape=Shape([2], 4), data=input_data)
                x = F.input(data=input_data)
                w1 = F.input(param=pw1)
                b1 = F.input(param=pb1)
                w2 = F.input(param=pw2)
                b2 = F.input(param=pb2)
                h = F.tanh(F.matmul(w1, x) + b1)
                y = F.matmul(w2, h) + b2

                # Calculates values.
                y_val = g.forward(y).to_list()
                print("epoch ", i, ":")
                for j in range(4):
                    print("  [", j, "]: ", y_val[j])
                    #t = F.input(shape=Shape([], 4), data=output_data)
                    t = F.input(data=output_data)
                diff = t - y
                loss = F.batch.mean(diff * diff)
                loss_val = g.forward(loss).to_list()[0]
                print("  loss: ", loss_val)
                trainer.reset_gradients()
                g.backward(loss)
                trainer.update()
Ejemplo n.º 2
0
    def init(self, d_model):
        assert d_model % self.n_heads == 0, 'd_model must be a multiple of n_heads.'

        self.pwq.init([d_model, d_model], I.XavierUniform())
        self.pwk.init([d_model, d_model], I.XavierUniform())
        self.pwv.init([d_model, d_model], I.XavierUniform())
        self.pwo.init([d_model, d_model], I.XavierUniform())
Ejemplo n.º 3
0
 def init(self, src_vocab_size, trg_vocab_size, embed_size, hidden_size):
     """Creates a new EncoderDecoder object."""
     self.psrc_lookup.init([embed_size, src_vocab_size], I.XavierUniform())
     self.ptrg_lookup.init([embed_size, trg_vocab_size], I.XavierUniform())
     self.pwhy.init([trg_vocab_size, hidden_size], I.XavierUniform())
     self.pby.init([trg_vocab_size], I.Constant(0))
     self.src_lstm.init(embed_size, hidden_size)
     self.trg_lstm.init(embed_size, hidden_size)
Ejemplo n.º 4
0
 def __init__(self, vocab_size, eos_id):
     self.eos_id = eos_id
     self.pwlookup = Parameter([NUM_HIDDEN_UNITS, vocab_size],
                               I.XavierUniform())
     self.pwxs = Parameter([NUM_HIDDEN_UNITS, NUM_HIDDEN_UNITS],
                           I.XavierUniform())
     self.pwsy = Parameter([vocab_size, NUM_HIDDEN_UNITS],
                           I.XavierUniform())
     self.add_all_parameters()
Ejemplo n.º 5
0
 def __init__(self, vocab_size, eos_id, trainer):
     self.eos_id_ = eos_id
     self.pwlookup_ = Parameter([NUM_HIDDEN_UNITS, vocab_size],
                                I.XavierUniform())
     self.pwxs_ = Parameter([NUM_HIDDEN_UNITS, NUM_HIDDEN_UNITS],
                            I.XavierUniform())
     self.pwsy_ = Parameter([vocab_size, NUM_HIDDEN_UNITS],
                            I.XavierUniform())
     trainer.add_parameter(self.pwlookup_)
     trainer.add_parameter(self.pwxs_)
     trainer.add_parameter(self.pwsy_)
Ejemplo n.º 6
0
 def init(self, src_vocab_size, trg_vocab_size, embed_size, hidden_size):
     """Creates a new AttentionalEncoderDecoder object."""
     self.psrc_lookup.init([embed_size, src_vocab_size], I.XavierUniform())
     self.ptrg_lookup.init([embed_size, trg_vocab_size], I.XavierUniform())
     self.pwhj.init([embed_size, 2 * hidden_size], I.XavierUniform())
     self.pbj.init([embed_size], I.Constant(0))
     self.pwjy.init([trg_vocab_size, embed_size], I.XavierUniform())
     self.pby.init([trg_vocab_size], I.Constant(0))
     self.src_fw_lstm.init(embed_size, hidden_size)
     self.src_bw_lstm.init(embed_size, hidden_size)
     self.trg_lstm.init(2 * embed_size, hidden_size)
Ejemplo n.º 7
0
 def __init__(self, name, src_vocab_size, trg_vocab_size, embed_size,
              hidden_size, dropout_rate):
     self.name_ = name
     self.dropout_rate_ = dropout_rate
     self.psrc_lookup_ = Parameter([embed_size, src_vocab_size],
                                   I.XavierUniform())
     self.ptrg_lookup_ = Parameter([embed_size, trg_vocab_size],
                                   I.XavierUniform())
     self.pwhy_ = Parameter([trg_vocab_size, hidden_size],
                            I.XavierUniform())
     self.pby_ = Parameter([trg_vocab_size], I.Constant(0))
     self.src_lstm_ = LSTM(name + "_src_lstm", embed_size, hidden_size)
     self.trg_lstm_ = LSTM(name + "_trg_lstm", embed_size, hidden_size)
Ejemplo n.º 8
0
 def test_pyoptimizer_parameter(self):
     dev = D.Naive()
     Device.set_default(dev)
     pw1 = Parameter([8, 2], I.XavierUniform())
     self.t.add(pw1)
     self.assertIn("testadam-m1", pw1.stats)
     self.assertIn("testadam-m2", pw1.stats)
Ejemplo n.º 9
0
def train_func(trainer):
    dev = D.Naive(12345)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    pw1 = Parameter([8, 2], I.XavierUniform())
    pb1 = Parameter([8], I.Constant(0))
    pw2 = Parameter([1, 8], I.XavierUniform())
    pb2 = Parameter([1], I.Constant(0))

    trainer.add_parameter(pw1)
    trainer.add_parameter(pb1)
    trainer.add_parameter(pw2)
    trainer.add_parameter(pb2)

    input_data = [1, 1, 1, -1, -1, 1, -1, -1]
    output_data = [1, -1, -1, 1]

    for i in range(10):
        g.clear()
        x = F.input(input_data, Shape([2], 4))
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        h = F.tanh(w1 @ x + b1)
        y = w2 @ h + b2

        t = F.input(output_data, Shape([], 4))
        diff = t - y
        loss = F.batch.mean(diff * diff)

        trainer.reset_gradients()
        loss.backward()
        trainer.update()

    return [
        pw1.value.to_list(),
        pb1.value.to_list(),
        pw2.value.to_list(),
        pb2.value.to_list()
    ]
Ejemplo n.º 10
0
 def init(self, src_vocab_size, trg_vocab_size, embed_size, hidden_size):
     self.psrc_lookup_.init([embed_size, src_vocab_size], I.XavierUniform())
     self.ptrg_lookup_.init([embed_size, trg_vocab_size], I.XavierUniform())
     self.pwfbw_.init([2*hidden_size, hidden_size], I.XavierUniform())
     self.pwhw_.init([hidden_size, hidden_size], I.XavierUniform())
     self.pwwe_.init([hidden_size], I.XavierUniform())
     self.pwhj_.init([embed_size, hidden_size], I.XavierUniform())
     self.pbj_.init([embed_size], I.Constant(0))
     self.pwjy_.init([trg_vocab_size, embed_size], I.XavierUniform())
     self.pby_.init([trg_vocab_size], I.Constant(0))
     self.src_fw_lstm_.init(embed_size, hidden_size)
     self.src_bw_lstm_.init(embed_size, hidden_size)
     self.trg_lstm_.init(embed_size+hidden_size*2, hidden_size)
Ejemplo n.º 11
0
    def primitiv_xor_test(self):
        dev = D.Naive()
        Device.set_default(dev)
        g = Graph()
        Graph.set_default(g)

        input_data = [
            np.array([[1], [1]]),
            np.array([[-1], [1]]),
            np.array([[-1], [-1]]),
            np.array([[1], [-1]]),
        ]

        label_data = [
            np.array([1]),
            np.array([-1]),
            np.array([1]),
            np.array([-1]),
        ]

        N = 8
        pw = Parameter([1, N], I.XavierUniform())
        pb = Parameter([], I.Constant(0))
        pu = Parameter([N, 2], I.XavierUniform())
        pc = Parameter([N], I.Constant(0))
        if os.path.isfile('output/xor/pw.data') and os.path.isfile(
                'output/xor/pb.data') and os.path.isfile(
                    'output/xor/pu.data') and os.path.isfile(
                        'output/xor/pc.data'):
            pw.load('output/xor/pw.data')
            pb.load('output/xor/pb.data')
            pu.load('output/xor/pu.data')
            pc.load('output/xor/pc.data')

        optimizer = O.SGD(0.01)
        optimizer.add(pw, pb, pu, pc)

        for epoch in range(1000):
            print(epoch, end=' ')

            g.clear()

            x = F.input(input_data)
            w = F.parameter(pw)
            b = F.parameter(pb)
            u = F.parameter(pu)
            c = F.parameter(pc)
            h = F.tanh(u @ x + c)
            y = F.tanh(w @ h + b)

            for val in y.to_list():
                print('{:+.6f},'.format(val), end=' ')

            loss = self.calc_loss(y, label_data)
            print('loss={:.6f}'.format(loss.to_float()))

            optimizer.reset_gradients()
            loss.backward()
            optimizer.update()

        pw.save('output/xor/pw.data')
        pb.save('output/xor/pb.data')
        pu.save('output/xor/pu.data')
        pc.save('output/xor/pc.data')

        return y.to_list()
Ejemplo n.º 12
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    dev = D.Naive()  # or D.CUDA(gpuid)
    Device.set_default(dev)

    pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform())
    pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0))
    pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform())
    pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0))

    optimizer = O.SGD(.5)
    optimizer.add(pw1, pb1, pw2, pb2)

    def make_graph(inputs, train):
        x = F.input(inputs)

        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        h = F.relu(w1 @ x + b1)

        h = F.dropout(h, .5, train)

        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        return w2 @ h + b2

    ids = list(range(NUM_TRAIN_SAMPLES))

    g = Graph()
    Graph.set_default(g)

    for epoch in range(MAX_EPOCH):
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="")
            inputs = [train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]
            labels = [train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs, True)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="")
            inputs = [test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs, False)
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if (v > maxval):
                        maxval = v
                        argmax = j
                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))
Ejemplo n.º 13
0
 def init(self, vocab, d_model):
     self.plookup.init([d_model, vocab], I.XavierUniform())
     self.pby.init([1, vocab], I.XavierUniform())
Ejemplo n.º 14
0
 def init(self, in_size, out_size):
     """Creates a new LSTM."""
     self._pwxh.init([4 * out_size, in_size], I.XavierUniform())
     self._pwhh.init([4 * out_size, out_size], I.XavierUniform())
     self._pbh.init([4 * out_size], I.Constant(0))
Ejemplo n.º 15
0
def main():
    dev = D.Naive()  # or D.CUDA(gpuid)
    Device.set_default(dev)

    # Parameters
    pw1 = Parameter([8, 2], I.XavierUniform())
    pb1 = Parameter([8], I.Constant(0))
    pw2 = Parameter([1, 8], I.XavierUniform())
    pb2 = Parameter([], I.Constant(0))

    # Optimizer
    optimizer = O.SGD(0.1)

    # Registers parameters.
    optimizer.add_parameter(pw1)
    optimizer.add_parameter(pb1)
    optimizer.add_parameter(pw2)
    optimizer.add_parameter(pb2)

    # Training data
    input_data = [
        np.array([1, 1], dtype=np.float32),  # Sample 1
        np.array([1, -1], dtype=np.float32),  # Sample 2
        np.array([-1, 1], dtype=np.float32),  # Sample 3
        np.array([-1, -1], dtype=np.float32),  # Sample 4
    ]
    output_data = [
        np.array([1], dtype=np.float32),  # Label 1
        np.array([-1], dtype=np.float32),  # Label 2
        np.array([-1], dtype=np.float32),  # Label 3
        np.array([1], dtype=np.float32),  # Label 4
    ]

    g = Graph()
    Graph.set_default(g)

    for i in range(10):
        g.clear()

        # Builds a computation graph.
        x = F.input(input_data)
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        h = F.tanh(w1 @ x + b1)
        y = w2 @ h + b2

        # Obtains values.
        y_val = y.to_list()
        print("epoch ", i, ":")
        for j in range(4):
            print("  [", j, "]: ", y_val[j])

        # Extends the computation graph to calculate loss values.
        t = F.input(output_data)
        diff = t - y
        loss = F.batch.mean(diff * diff)

        # Obtains the loss.
        loss_val = loss.to_float()
        print("  loss: ", loss_val)

        # Updates parameters.
        optimizer.reset_gradients()
        loss.backward()
        optimizer.update()
Ejemplo n.º 16
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    # Initializes 2 device objects which manage different GPUs.
    dev0 = D.CUDA(0)
    dev1 = D.CUDA(1)

    # Parameters on GPU 0.
    pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform(), dev0)
    pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0), dev0)

    # Parameters on GPU 1.
    pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform(), dev1)
    pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0), dev1)

    trainer = T.SGD(.1)
    trainer.add_parameter(pw1)
    trainer.add_parameter(pb1)
    trainer.add_parameter(pw2)
    trainer.add_parameter(pb2)

    def make_graph(inputs):
        # We first store input values explicitly on GPU 0.
        x = F.input(inputs, device=dev0)
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        # The hidden layer is calculated and implicitly stored on GPU 0.
        h_on_gpu0 = F.relu(w1 @ x + b1)
        # `copy()` transfers the hiddne layer to GPU 1.
        h_on_gpu1 = F.copy(h_on_gpu0, dev1)
        # The output layer is calculated and implicitly stored on GPU 1.
        return w2 @ h_on_gpu1 + b2

    ids = list(range(NUM_TRAIN_SAMPLES))

    g = Graph()
    Graph.set_default(g)

    for epoch in range(MAX_EPOCH):
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="")
            inputs = [train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]
            labels = [train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            trainer.reset_gradients()
            avg_loss.backward()
            trainer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="")
            inputs = [test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs)
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if (v > maxval):
                        maxval = v
                        argmax = j
                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))
Ejemplo n.º 17
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte",
                               NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte",
                               NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    dev = D.CUDA(0)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    # Parameters of CNNs
    # Shape: {kernel_height, kernel_width, in_channels, out_channels}
    pw_cnn1 = Parameter(Shape([KERNEL_SIZE1, KERNEL_SIZE1, 1, NUM_CHANNELS1]),
                        I.XavierUniformConv2D())
    pw_cnn2 = Parameter(
        Shape([KERNEL_SIZE2, KERNEL_SIZE2, NUM_CHANNELS1, NUM_CHANNELS2]),
        I.XavierUniformConv2D())

    # Parameters of FC layers
    pw_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS]),
                       I.XavierUniform())
    pw_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS]),
                       I.XavierUniform())
    pb_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS]), I.Constant(0))
    pb_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS]), I.Constant(0))

    # Optimizer
    optimizer = O.SGD(.1)
    optimizer.add(pw_cnn1, pw_cnn2, pw_fc1, pw_fc2, pb_fc1, pb_fc2)

    # Helper lambda to construct the predictor network.
    def make_graph(inputs, train):
        # Input and parameters.
        #x = F.input(Shape([IMAGE_HEIGHT, IMAGE_WIDTH], BATCH_SIZE), inputs)
        x = F.input(inputs)
        w_cnn1 = F.parameter(pw_cnn1)
        w_cnn2 = F.parameter(pw_cnn2)
        w_fc1 = F.parameter(pw_fc1)
        w_fc2 = F.parameter(pw_fc2)
        b_fc1 = F.parameter(pb_fc1)
        b_fc2 = F.parameter(pb_fc2)
        # CNNs
        h_cnn1 = F.relu(F.conv2d(x, w_cnn1, PADDING1, PADDING1, 1, 1, 1, 1))
        h_pool1 = F.max_pool2d(h_cnn1, 2, 2, 0, 0, 2, 2)
        h_cnn2 = F.relu(
            F.conv2d(h_pool1, w_cnn2, PADDING2, PADDING2, 1, 1, 1, 1))
        h_pool2 = F.max_pool2d(h_cnn2, 2, 2, 0, 0, 2, 2)
        # FC layers
        x_fc = F.dropout(F.flatten(h_pool2), .5, train)
        h_fc = F.dropout(F.relu(F.matmul(w_fc1, x_fc) + b_fc1), .5, train)
        return F.matmul(w_fc2, h_fc) + b_fc2

    # Batch randomizer
    ids = list(range(NUM_TRAIN_SAMPLES))

    for epoch in range(MAX_EPOCH):
        # Shuffles sample IDs.
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES),
                  end="")
            # Makes a minibatch for training.
            inputs = [
                train_inputs[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]
            labels = [
                train_labels[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]

            # Constructs the graph.
            g.clear()
            y = make_graph(inputs, True)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            # Dump computation graph at the first time.
            # if epoch == 0 and batch == 0:
            #     print(g.dump("dot"))

            # Implicit forward, backward, and updates parameters.
            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES),
                  end="")
            # Makes a test minibatch.
            inputs = [
                test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)
            ]

            # Constructs the graph.
            g.clear()
            y = make_graph(inputs, False)

            # Gets outputs, argmax, and compares them with the label.
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if v > maxval:
                        maxval = v
                        argmax = j

                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("epoch %d: accuracy: %.2f%%" % (epoch, accuracy))

    return 0
Ejemplo n.º 18
0
 def __init__(self, name, in_size, out_size):
     self.name_ = name
     self.out_size_ = out_size
     self.pwxh_ = Parameter([4 * out_size, in_size], I.XavierUniform())
     self.pwhh_ = Parameter([4 * out_size, out_size], I.XavierUniform())
     self.pbh_ = Parameter([4 * out_size], I.Constant(0))
Ejemplo n.º 19
0
 def init(self, d_model, d_ff):
     self.pw1.init([d_model, d_ff], I.XavierUniform())
     self.pb1.init([1, d_ff], I.XavierUniform())
     self.pw2.init([d_ff, d_model], I.XavierUniform())
     self.pb2.init([1, d_model], I.XavierUniform())