def main(): Eprint() X = (x, y, z) = symbols('x y z', real=True) (o3d, ex, ey, ez) = Ga.build('e_x e_y e_z', g=[1, 1, 1], coords=(x, y, z)) A = x * (ey ^ ez) + y * (ez ^ ex) + z * (ex ^ ey) print 'A =', A print 'grad^A =', (o3d.grad ^ A).simplify() print f = o3d.mv(1 / sqrt(x**2 + y**2 + z**2)) print 'f =', f print 'grad*f =', (o3d.grad * f).simplify() print B = f * A print 'B =', B print Curl_B = o3d.grad ^ B print 'grad^B =', Curl_B.simplify() return
def main(): Get_Program(True) #ga_print_on() Eprint() basic_multivector_operations() check_generalized_BAC_CAB_formulas() derivatives_in_rectangular_coordinates() derivatives_in_spherical_coordinates() rounding_numerical_components() noneuclidian_distance_calculation() conformal_representations_of_circles_lines_spheres_and_planes() properties_of_geometric_objects() extracting_vectors_from_conformal_2_blade() reciprocal_frame_test() #ga_print_off() return
def main(): Eprint() (o3d, ex, ey, ez) = Ga.build('e*x|y|z', g=[1, 1, 1]) u = o3d.mv('u', 'vector') v = o3d.mv('v', 'vector') w = o3d.mv('w', 'vector') print u print v uv = u ^ v print uv print uv.is_blade() exp_uv = uv.exp() print 'exp(uv) =', exp_uv return
def main(): Get_Program() Eprint() Mv_setup_options() return
def main(): Eprint() (o3d, ex, ey, ez) = Ga.build('e*x|y|z', g=[1, 1, 1]) (r, th, phi, alpha, beta, gamma) = symbols('r theta phi alpha beta gamma', real=True) (x_a, y_a, z_a, x_b, y_b, z_b, ab_mag, th_ab) = symbols('x_a y_a z_a x_b y_b z_b ab_mag theta_ab', real=True) I = ex ^ ey ^ ez a = o3d.mv('a', 'vector') b = o3d.mv('b', 'vector') c = o3d.mv('c', 'vector') ab = a - b print('a =', a) print('b =', b) print('c =', c) print('ab =', ab) ab_norm = ab / ab_mag print('ab/|ab| =', ab_norm) R_ab = cos(th_ab / 2) + I * ab_norm * cos(th_ab / 2) R_ab_rev = R_ab.rev() print('R_ab =', R_ab) print('R_ab_rev =', R_ab_rev) e__ab_x = R_ab * ex * R_ab_rev e__ab_y = R_ab * ey * R_ab_rev e__ab_z = R_ab * ez * R_ab_rev print('e_ab_x =', e__ab_x) print('e_ab_y =', e__ab_y) print('e_ab_z =', e__ab_z) R_phi = cos(phi / 2) - (ex ^ ey) * sin(phi / 2) R_phi_rev = R_phi.rev() print(R_phi) print(R_phi_rev) e_phi = (R_phi * ey * R_phi.rev()) print(e_phi) R_th = cos(th / 2) + I * e_phi * sin(th / 2) R_th_rev = R_th.rev() print(R_th) print(R_th_rev) e_r = (R_th * R_phi * ex * R_phi_rev * R_th_rev).trigsimp() e_th = (R_th * R_phi * ez * R_phi_rev * R_th_rev).trigsimp() e_phi = e_phi.trigsimp() print('e_r =', e_r) print('e_th =', e_th) print('e_phi =', e_phi) return
Bh = B / NB ap = ebar - ((ebar ^ Bh) * Bh) a1 = ap + (ap * Bh) a2 = ap - (ap * Bh) #print '#a1 = ',a1 #print '#a2 = ',a2 return [a1, a2] def norm(X): Y = sqrt((X * X).scalar()) return Y Get_Program(True) Eprint() g = '1 0 0 0, \ 0 1 0 0, \ 0 0 0 2, \ 0 0 2 0' c2d = Ga('e_1 e_2 n \\bar{n}', g=g) (e1, e2, n, nbar) = c2d.mv() global n, nbar, I def F(x): global n, nbar Fx = ((x * x) * n + 2 * x - nbar) / 2
def main(): Get_Program() Eprint() coefs_test() return