Ejemplo n.º 1
0
def Process_690(args):
    path = args.file_path
    all_folders = os.listdir(path)

    count = 0

    for folder in all_folders:
        # load data
        train_seq_path = os.path.join(args.file_path, folder, "train",
                                      "sequences_alph.npy")
        test_seq_path = os.path.join(args.file_path, folder, "test",
                                     "sequences_alph.npy")
        train_lab_path = os.path.join(args.file_path, folder, "train",
                                      "targets.npy")
        test_lab_path = os.path.join(args.file_path, folder, "test",
                                     "targets.npy")
        train_sequences = np.load(train_seq_path)
        test_sequences = np.load(test_seq_path)
        train_labels = np.load(train_lab_path)
        test_labels = np.load(test_lab_path)

        train_sequences = train_sequences.reshape(train_sequences.shape[0], 1)
        test_sequences = test_sequences.reshape(test_sequences.shape[0], 1)
        train_labels = train_labels.reshape(train_labels.shape[0], 1)
        test_labels = test_labels.reshape(test_labels.shape[0], 1)

        # concat sequence and labels together
        trains = list(np.concatenate((train_sequences, train_labels), axis=1))
        tests = list(np.concatenate((test_sequences, test_labels), axis=1))

        random.seed(args.seed)
        random.shuffle(trains)
        random.shuffle(trains)
        random.shuffle(tests)
        random.shuffle(tests)

        # make output path
        output_path = os.path.join(args.output_path, str(args.kmer), folder)
        if not os.path.exists(output_path):
            os.makedirs(output_path)

        # write files
        f_train = open(os.path.join(output_path, "train.tsv"), 'wt')
        tsv_train = csv.writer(f_train, delimiter='\t')
        tsv_train.writerow(["sequence", "label"])
        for i in range(len(trains)):
            sentence = get_kmer_sentence(trains[i][0].decode("utf-8"),
                                         args.kmer)
            tsv_train.writerow([sentence, int(trains[i][1])])

        f_dev = open(os.path.join(output_path, "dev.tsv"), 'wt')
        tsv_dev = csv.writer(f_dev, delimiter='\t')
        tsv_dev.writerow(["sequence", "label"])
        for i in range(len(tests)):
            sentence = get_kmer_sentence(tests[i][0].decode("utf-8"),
                                         args.kmer)
            tsv_dev.writerow([sentence, int(tests[i][1])])

        count += 1
        print("Finish %s folders" % (count))
Ejemplo n.º 2
0
 def write_file_pair(lines,
                     writer,
                     seq1_index=0,
                     seq2_index=1,
                     label_index=2):
     for line in lines:
         seq1 = get_kmer_sentence(line[seq1_index], args.kmer)
         seq2 = get_kmer_sentence(line[seq2_index], args.kmer)
         writer.writerow([seq1, seq2, str(int(line[label_index]))])
Ejemplo n.º 3
0
 def write_file(lines, writer, seq_index=2, label_index=3):
     global max_length
     for line in lines:
         sentence = get_kmer_sentence(line[seq_index], args.kmer)
         if len(sentence.split()) > max_length:
             max_length = len(sentence.split())
         writer.writerow([sentence, str(line[label_index])])
Ejemplo n.º 4
0
def Process(args):

    SCAN_LIST = [int(500 / (args.slide - 1)) * i for i in range(args.slide)]

    old_file = open(args.file_path, "r", encoding="utf-8-sig")
    old_lines = list(csv.reader(old_file, delimiter=",", quotechar=None))[1:]

    if args.output_path:
        root_path = args.output_path + "/"
    else:
        root_path = "/".join(args.file_path.split("/")[:-1]) + "/" + str(
            args.kmer) + "/"
    if not os.path.exists(root_path):
        os.makedirs(root_path)

    labels = np.array([])
    new_file = open(root_path + "dev.tsv", 'wt')
    tsv_w = csv.writer(new_file, delimiter='\t')
    tsv_w.writerow(["setence", "label"])

    for line in old_lines:
        label = line[6]
        labels = np.append(labels, int(label))

        for index in SCAN_LIST:
            sub_sequence = line[8][index:index + 500]
            sub_sentence = get_kmer_sentence(sub_sequence, kmer=args.kmer)
            tsv_w.writerow([sub_sentence, label])

    np.save(root_path + "label.npy", labels)
Ejemplo n.º 5
0
def write_file(lines, path, kmer, head=True, seq_index=0, label_index=1):
    with open(path, 'wt') as f:
        tsv_w = csv.writer(f, delimiter='\t')
        if head:
            tsv_w.writerow(["setence", "label"])
        for line in lines:
            if kmer == 0:
                sentence = str(line[seq_index])
            else:
                sentence = str(
                    get_kmer_sentence("".join(line[seq_index].split()), kmer))
            if label_index == None:
                label = "0"
            else:
                label = str(line[label_index])
            tsv_w.writerow([sentence, label])
Ejemplo n.º 6
0
def Process_splice(args):
    # X_train = np.load(os.path.join(args.file_path, "x_train.npy"))
    # X_dev = np.load(os.path.join(args.file_path, "x_dev.npy"))
    # Y_train = np.load(os.path.join(args.file_path, "y_train.npy"))
    # Y_dev = np.load(os.path.join(args.file_path, "y_dev.npy"))

    # assert len(X_train) == len(Y_train)
    # assert len(X_dev) == len(Y_dev)

    # for kmer in range(3,7):
    #     root_path = os.path.join(args.file_path, str(kmer))
    #     os.makedirs(root_path)
    #     f_train = open(os.path.join(root_path, "train.tsv"), "wt")
    #     f_dev = open(os.path.join(root_path, "dev.tsv"), "wt")
    #     tsv_train = csv.writer(f_train, delimiter='\t')
    #     tsv_dev = csv.writer(f_dev, delimiter='\t')
    #     tsv_train.writerow(["seq", "label"])
    #     tsv_dev.writerow(["seq", "label"])

    #     for i, seq in enumerate(X_train):
    #         sequence = get_kmer_sentence(str(seq), kmer)
    #         tsv_train.writerow([sequence, int(Y_train[i])])

    #     for j, seq in enumerate(X_dev):
    #         sequence = get_kmer_sentence(str(seq), kmer)
    #         tsv_dev.writerow([sequence, int(Y_dev[j])])

    X_test = np.load(os.path.join(args.file_path, "x_test.npy"))
    Y_test = np.load(os.path.join(args.file_path, "y_test.npy"))

    assert len(X_test) == len(Y_test)

    for kmer in range(3, 7):
        root_path = os.path.join(args.file_path, str(kmer))
        os.makedirs(root_path)
        f_test = open(os.path.join(root_path, "dev.tsv"), "wt")
        tsv_test = csv.writer(f_test, delimiter='\t')
        tsv_test.writerow(["seq", "label"])

        for i, seq in enumerate(X_test):
            sequence = get_kmer_sentence(str(seq), kmer)
            label = int(np.where(Y_test[i] == 1)[0])
            tsv_test.writerow([sequence, label])
Ejemplo n.º 7
0
def Visualize(args):
    if args.kmer == 0:
        KMER_LIST = [3, 4, 5, 6]

        for kmer in KMER_LIST:
            tokenizer_name = 'dna' + str(kmer)
            model_path = os.path.join(args.model_path, str(kmer))
            model = BertModel.from_pretrained(model_path,
                                              output_attentions=True)
            tokenizer = DNATokenizer.from_pretrained(tokenizer_name,
                                                     do_lower_case=False)
            raw_sentence = args.sequence if args.sequence else SEQUENCE
            sentence_a = get_kmer_sentence(raw_sentence, kmer)
            tokens = sentence_a.split()

            attention = get_attention_dna(model,
                                          tokenizer,
                                          sentence_a,
                                          start=args.start_layer,
                                          end=args.end_layer)
            attention_scores = np.array(attention).reshape(
                np.array(attention).shape[0], 1)
            # attention_scores[0] = 0

            real_scores = get_real_score(attention_scores, kmer, args.metric)
            real_scores = real_scores / np.linalg.norm(real_scores)

            if kmer != KMER_LIST[0]:
                scores += real_scores.reshape(1, real_scores.shape[0])
            else:
                scores = real_scores.reshape(1, real_scores.shape[0])

    else:
        # load model and calculate attention
        tokenizer_name = 'dna' + str(args.kmer)
        model_path = args.model_path
        model = BertModel.from_pretrained(model_path, output_attentions=True)
        tokenizer = DNATokenizer.from_pretrained(tokenizer_name,
                                                 do_lower_case=False)
        raw_sentence = args.sequence if args.sequence else SEQUENCE
        sentence_a = get_kmer_sentence(raw_sentence, args.kmer)
        tokens = sentence_a.split()

        attention = get_attention_dna(model,
                                      tokenizer,
                                      sentence_a,
                                      start=args.start_layer,
                                      end=args.end_layer)
        attention_scores = np.array(attention).reshape(
            np.array(attention).shape[0], 1)
        # attention_scores[0] = 0

        real_scores = get_real_score(attention_scores, args.kmer, args.metric)
        scores = real_scores.reshape(1, real_scores.shape[0])

    ave = np.sum(scores) / scores.shape[1]
    print(ave)
    print(scores)

    # plot
    sns.set()
    ax = sns.heatmap(scores, cmap='YlGnBu', vmin=0)
    plt.show()