def plot_product(name): new_data, date = readFile() data = [go.Scatter(x=date, y=new_data[name], mode='lines+markers')] layout = go.Layout( title=go.layout.Title( text='Historical Trend Graph for {}'.format(name), xref='paper', x=0), xaxis=go.layout.XAxis(title=go.layout.xaxis.Title( text='Months', font=dict(family='Roboto', size=18, color='#7f7f7f'))), yaxis=go.layout.YAxis(title=go.layout.yaxis.Title( text='Sale Qty', font=dict(family='Roboto', size=18, color='#7f7f7f')))) fig = go.Figure(data=data, layout=layout) fig.layout.plot_bgcolor = 'rgba(230, 236, 245, 0.1)' fig.layout.paper_bgcolor = 'rgba(230, 236, 245, 0.1)' graph = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) return graph
import json import plotly import plotly.graph_objs as go import matplotlib.pyplot as plt from statsmodels.tsa.seasonal import seasonal_decompose from processing import readFile new_data, date = readFile() def plot_trend(name): a = seasonal_decompose(new_data[name], model="add") # plot = a.seasonal.plot(); # print(a.seasonal.values) data = [go.Scatter(x=date, y=a.trend.values, mode='lines+markers')] layout = go.Layout( title=go.layout.Title(text='Trend Graph for {}'.format(name), xref='paper', x=0), xaxis=go.layout.XAxis(title=go.layout.xaxis.Title( text='Months', font=dict(family='Roboto', size=18, color='#7f7f7f'))), yaxis=go.layout.YAxis(title=go.layout.yaxis.Title( text='Sale Qty', font=dict(family='Roboto', size=18, color='#7f7f7f')))) fig = go.Figure(data=data, layout=layout) fig.layout.plot_bgcolor = 'rgba(230, 236, 245, 0.1)' fig.layout.paper_bgcolor = 'rgba(230, 236, 245, 0.1)'