Ejemplo n.º 1
0
def calculate_sf_from_screen(screen):
    """ Calculate structure function image from screen

    Screen axes are ['XX', 'YY', 'TIME', 'FREQ']
    :param screen:
    :return:
    """
    from scipy.signal import fftconvolve
    nchan, ntimes, ny, nx = screen.data.shape

    sf = numpy.zeros([nchan, 1, 2 * ny - 1, 2 * nx - 1])
    for chan in range(nchan):
        sf[chan, 0, ...] = fftconvolve(screen.data[chan, 0, ...],
                                       screen.data[chan, 0, ::-1, ::-1])
        for itime in range(ntimes):
            sf += fftconvolve(screen.data[chan, itime, ...],
                              screen.data[chan, itime, ::-1, ::-1])
        sf[chan, 0, ...] /= numpy.max(sf[chan, 0, ...])
        sf[chan, 0, ...] = 1.0 - sf[chan, 0, ...]

    sf_image = copy_image(screen)
    sf_image.data = sf[:, :, (ny - ny // 4):(ny + ny // 4),
                       (nx - nx // 4):(nx + nx // 4)]
    sf_image.wcs.wcs.crpix[0] = ny // 4 + 1
    sf_image.wcs.wcs.crpix[1] = ny // 4 + 1
    sf_image.wcs.wcs.crpix[2] = 1

    return sf_image
def sum_invert_results(image_list):
    """ Sum a set of invert results with appropriate weighting

    :param image_list: List of [image, sum weights] pairs
    :return: image, sum of weights
    """
    if len(image_list) == 1:
        return image_list[0]

    first = True
    sumwt = 0.0
    im = None
    for i, arg in enumerate(image_list):
        if arg is not None:
            if isinstance(arg[1], numpy.ndarray):
                scale = arg[1][..., numpy.newaxis, numpy.newaxis]
            else:
                scale = arg[1]
            if first:
                im = copy_image(arg[0])
                im.data *= scale
                sumwt = arg[1]
                first = False
            else:
                im.data += scale * arg[0].data
                sumwt += arg[1]

    assert not first, "No invert results"

    im = normalize_sumwt(im, sumwt)
    return im, sumwt
Ejemplo n.º 3
0
 def test_calculate_image_frequency_moments(self):
     frequency = numpy.linspace(0.9e8, 1.1e8, 9)
     cube = create_low_test_image_from_gleam(npixel=512,
                                             cellsize=0.0001,
                                             frequency=frequency,
                                             flux_limit=1.0)
     log.debug(
         export_image_to_fits(cube,
                              fitsfile='%s/test_moments_cube.fits' %
                              (self.dir)))
     original_cube = copy_image(cube)
     moment_cube = calculate_image_frequency_moments(cube, nmoment=3)
     log.debug(
         export_image_to_fits(moment_cube,
                              fitsfile='%s/test_moments_moment_cube.fits' %
                              (self.dir)))
     reconstructed_cube = calculate_image_from_frequency_moments(
         cube, moment_cube)
     log.debug(
         export_image_to_fits(
             reconstructed_cube,
             fitsfile='%s/test_moments_reconstructed_cube.fits' %
             (self.dir)))
     error = numpy.std(reconstructed_cube.data - original_cube.data)
     assert error < 0.2
Ejemplo n.º 4
0
    def invert_ng(bvis: BlockVisibility,
                  model: Image,
                  dopsf: bool = False,
                  normalize: bool = True,
                  **kwargs) -> (Image, numpy.ndarray):
        """ Invert using nifty-gridder module
        
        https://gitlab.mpcdf.mpg.de/ift/nifty_gridder
    
        Use the image im as a template. Do PSF in a separate call.
    
        This is at the bottom of the layering i.e. all transforms are eventually expressed in terms
        of this function. . Any shifting needed is performed here.
    
        :param bvis: BlockVisibility to be inverted
        :param im: image template (not changed)
        :param normalize: Normalize by the sum of weights (True)
        :return: (resulting image, sum of the weights for each frequency and polarization)
    
        """

        assert isinstance(bvis, BlockVisibility), bvis

        im = copy_image(model)

        nthreads = get_parameter(kwargs, "threads", 4)
        epsilon = get_parameter(kwargs, "epsilon", 1e-12)
        do_wstacking = get_parameter(kwargs, "do_wstacking", True)
        verbosity = get_parameter(kwargs, "verbosity", 0)

        sbvis = copy_visibility(bvis)
        sbvis = shift_vis_to_image(sbvis, im, tangent=True, inverse=False)

        vis = bvis.vis

        freq = sbvis.frequency  # frequency, Hz

        nrows, nants, _, vnchan, vnpol = vis.shape
        uvw = sbvis.uvw.reshape([nrows * nants * nants, 3])
        ms = vis.reshape([nrows * nants * nants, vnchan, vnpol])
        wgt = sbvis.imaging_weight.reshape(
            [nrows * nants * nants, vnchan, vnpol])

        if dopsf:
            ms[...] = 1.0 + 0.0j

        if epsilon > 5.0e-6:
            ms = ms.astype("c8")
            wgt = wgt.astype("f4")

        # Find out the image size/resolution
        npixdirty = im.nwidth
        pixsize = numpy.abs(numpy.radians(im.wcs.wcs.cdelt[0]))

        fuvw = uvw.copy()
        # We need to flip the u and w axes.
        fuvw[:, 0] *= -1.0
        fuvw[:, 2] *= -1.0

        nchan, npol, ny, nx = im.shape
        im.data[...] = 0.0
        sumwt = numpy.zeros([nchan, npol])

        ms = convert_pol_frame(ms,
                               bvis.polarisation_frame,
                               im.polarisation_frame,
                               polaxis=2)
        # There's a latent problem here with the weights.
        # wgt = numpy.real(convert_pol_frame(wgt, bvis.polarisation_frame, im.polarisation_frame, polaxis=2))

        # Set up the conversion from visibility channels to image channels
        vis_to_im = numpy.round(model.wcs.sub([4]).wcs_world2pix(
            freq, 0)[0]).astype('int')
        for vchan in range(vnchan):
            ichan = vis_to_im[vchan]
            for pol in range(npol):
                # Nifty gridder likes to receive contiguous arrays
                ms_1d = numpy.array([
                    ms[row, vchan:vchan + 1, pol]
                    for row in range(nrows * nants * nants)
                ],
                                    dtype='complex')
                ms_1d.reshape([ms_1d.shape[0], 1])
                wgt_1d = numpy.array([
                    wgt[row, vchan:vchan + 1, pol]
                    for row in range(nrows * nants * nants)
                ])
                wgt_1d.reshape([wgt_1d.shape[0], 1])
                dirty = ng.ms2dirty(fuvw,
                                    freq[vchan:vchan + 1],
                                    ms_1d,
                                    wgt_1d,
                                    npixdirty,
                                    npixdirty,
                                    pixsize,
                                    pixsize,
                                    epsilon,
                                    do_wstacking=do_wstacking,
                                    nthreads=nthreads,
                                    verbosity=verbosity)
                sumwt[ichan, pol] += numpy.sum(wgt[:, vchan, pol])
                im.data[ichan, pol] += dirty.T

        if normalize:
            im = normalize_sumwt(im, sumwt)

        return im, sumwt
    def ingest_visibility(self,
                          freq=None,
                          chan_width=None,
                          times=None,
                          add_errors=False,
                          block=True,
                          bandpass=False):
        if freq is None:
            freq = [1e8]
        if chan_width is None:
            chan_width = [1e6]
        if times is None:
            times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5)

        lowcore = create_named_configuration('LOWBD2', rmax=750.0)
        frequency = numpy.array(freq)
        channel_bandwidth = numpy.array(chan_width)

        phasecentre = SkyCoord(ra=+180.0 * u.deg,
                               dec=-60.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')
        if block:
            vt = create_blockvisibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        else:
            vt = create_visibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        cellsize = 0.001
        model = create_image_from_visibility(
            vt,
            npixel=self.npixel,
            cellsize=cellsize,
            npol=1,
            frequency=frequency,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"))
        nchan = len(self.frequency)
        flux = numpy.array(nchan * [[100.0]])
        facets = 4

        rpix = model.wcs.wcs.crpix - 1.0
        spacing_pixels = self.npixel // facets
        centers = [-1.5, -0.5, 0.5, 1.5]
        comps = list()
        for iy in centers:
            for ix in centers:
                p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                    int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
                sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1)
                comp = create_skycomponent(
                    direction=sc,
                    flux=flux,
                    frequency=frequency,
                    polarisation_frame=PolarisationFrame("stokesI"))
                comps.append(comp)
        if block:
            predict_skycomponent_visibility(vt, comps)
        else:
            predict_skycomponent_visibility(vt, comps)
        insert_skycomponent(model, comps)
        self.comps = comps
        self.model = copy_image(model)
        self.empty_model = create_empty_image_like(model)
        export_image_to_fits(
            model, '%s/test_pipeline_functions_model.fits' % (self.dir))

        if add_errors:
            # These will be the same for all calls
            numpy.random.seed(180555)
            gt = create_gaintable_from_blockvisibility(vt)
            gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.0)
            vt = apply_gaintable(vt, gt)

            if bandpass:
                bgt = create_gaintable_from_blockvisibility(vt, timeslice=1e5)
                bgt = simulate_gaintable(bgt,
                                         phase_error=0.01,
                                         amplitude_error=0.01,
                                         smooth_channels=4)
                vt = apply_gaintable(vt, bgt)

        return vt