Ejemplo n.º 1
0
def matchChains(atoms1, atoms2, **kwargs):
    """Returns pairs of chains matched based on sequence similarity.  Makes an
    all-to-all comparison of chains in *atoms1* and *atoms2*.  Chains are
    obtained from hierarchical views (:class:`.HierView`) of atom groups.
    This function returns a list of matching chains in a tuples that contain
    4 items:

      * matching chain from *atoms1* as a :class:`.AtomMap`
        instance,
      * matching chain from *atoms2* as a :class:`.AtomMap`
        instance,
      * percent sequence identity of the match,
      * percent sequence overlap of the match.

    List of matches are sorted in decreasing percent sequence identity order.
    :class:`.AtomMap` instances can be used to calculate RMSD values and
    superpose atom groups.

    :arg atoms1: atoms that contain a chain
    :type atoms1: :class:`.Chain`, :class:`.AtomGroup`, :class:`.Selection`

    :arg atoms2: atoms that contain a chain
    :type atoms2: :class:`.Chain`, :class:`.AtomGroup`, :class:`.Selection`

    :keyword subset: one of the following well-defined subsets of atoms:
        ``"calpha"`` (or ``"ca"``), ``"backbone"`` (or ``"bb"``),
        ``"heavy"`` (or ``"noh"``), or ``"all"``, default is ``"calpha"``
    :type subset: string

    :keyword seqid: percent sequence identity, default is 90
    :type seqid: float

    :keyword overlap: percent overlap, default is 90
    :type overlap: float

    :keyword pwalign: perform pairwise sequence alignment
    :type pwalign: bool

    If *subset* is set to *calpha* or *backbone*, only alpha carbon
    atoms or backbone atoms will be paired. If set to *all*, all atoms
    common to matched residues will be returned.

    This function tries to match chains based on residue numbers and names.
    All chains in *atoms1* is compared to all chains in *atoms2*.  This works
    well for different structures of the same protein.  When it fails,
    :mod:`Bio.pairwise2` is used for pairwise sequence alignment, and matching
    is performed based on the sequence alignment.  User can control, whether
    sequence alignment is performed or not with *pwalign* keyword.  If
    ``pwalign=True`` is passed, pairwise alignment is enforced."""

    if not isinstance(atoms1, (AtomGroup, Chain, Selection)):
        raise TypeError('atoms1 must be an AtomGroup, Chain, or Selection')
    if not isinstance(atoms2, (AtomGroup, Chain, Selection)):
        raise TypeError('atoms2 must be an AtomGroup, Chain, or Selection')

    subset = kwargs.get('subset', 'calpha')
    if subset not in _SUBSETS:
        raise ValueError('{0} is not a valid subset argument'.format(
            str(subset)))
    seqid = kwargs.get('seqid', 90.)
    assert isinstance(seqid, (float, int)), 'seqid must be float'
    assert 0 < seqid <= 100, 'seqid must be in the range from 0 to 100'
    coverage = kwargs.get('overlap')
    if coverage is None:
        coverage = kwargs.get('coverage', 90.)
    assert isinstance(coverage, (float, int)), 'overlap must be float'
    assert 0 < coverage <= 100, 'overlap must be in the range from 0 to 100'
    pwalign = kwargs.get('pwalign', None)

    if isinstance(atoms1, Chain):
        chains1 = [atoms1]
        atoms1 = atoms1.getAtomGroup()
    else:
        chains1 = list(atoms1.getHierView().iterChains())
        if not isinstance(atoms1, AtomGroup):
            atoms1 = atoms1.getAtomGroup()
    chains = list()
    for ch in chains1:
        simpch = SimpleChain(ch)
        if len(simpch) > 0:
            chains.append(simpch)
    chains1 = chains
    if not isinstance(atoms1, Chain):
        LOGGER.debug('Checking {0}: {1} chains are identified'.format(
            str(atoms1), len(chains1)))

    if isinstance(atoms2, Chain):
        chains2 = [atoms2]
        atoms2 = atoms2.getAtomGroup()
    else:
        chains2 = list(atoms2.getHierView().iterChains())
        if not isinstance(atoms2, AtomGroup):
            atoms2 = atoms2.getAtomGroup()
    chains = list()
    for ch in chains2:
        simpch = SimpleChain(ch)
        if len(simpch) > 0:
            chains.append(simpch)
    chains2 = chains
    if not isinstance(atoms2, Chain):
        LOGGER.debug('Checking {0}: {1} chains are identified'.format(
            str(atoms2), len(chains2)))

    matches = []
    unmatched = []
    LOGGER.debug('Trying to match chains based on residue numbers and names:')
    for simpch1 in chains1:
        for simpch2 in chains2:
            LOGGER.debug('  Comparing {0} (len={1}) and {2} (len={3}):'.format(
                simpch1.getTitle(), len(simpch1), simpch2.getTitle(),
                len(simpch2)))

            match1, match2, nmatches = getTrivialMatch(simpch1, simpch2)
            _seqid = nmatches * 100 / min(len(simpch1), len(simpch2))
            _cover = len(match2) * 100 / max(len(simpch1), len(simpch2))

            if _seqid >= seqid and _cover >= coverage:
                LOGGER.debug('\tMatch: {0} residues match with {1:.0f}% '
                             'sequence identity and {2:.0f}% overlap.'.format(
                                 len(match1), _seqid, _cover))
                matches.append(
                    (match1, match2, _seqid, _cover, simpch1, simpch2))
            else:
                LOGGER.debug('\tFailed to match chains (seqid={0:.0f}%, '
                             'overlap={1:.0f}%).'.format(_seqid, _cover))
                unmatched.append((simpch1, simpch2))

    if pwalign or (not matches and (pwalign is None or pwalign)):
        pairwise2 = importBioPairwise2()
        if pairwise2:
            LOGGER.debug('Trying to match chains based on {0} sequence '
                         'alignment:'.format(ALIGNMENT_METHOD))
            for simpch1, simpch2 in unmatched:
                LOGGER.debug('  Comparing {0} (len={1}) and {2} '
                             '(len={3}):'.format(simpch1.getTitle(),
                                                 len(simpch1),
                                                 simpch2.getTitle(),
                                                 len(simpch2)))
                match1, match2, nmatches = getAlignedMatch(simpch1, simpch2)
                _seqid = nmatches * 100 / min(len(simpch1), len(simpch2))
                _cover = len(match2) * 100 / max(len(simpch1), len(simpch2))
                if _seqid >= seqid and _cover >= coverage:
                    LOGGER.debug(
                        '\tMatch: {0} residues match with {1:.0f}% '
                        'sequence identity and {2:.0f}% overlap.'.format(
                            len(match1), _seqid, _cover))
                    matches.append(
                        (match1, match2, _seqid, _cover, simpch1, simpch2))
                else:
                    LOGGER.debug('\tFailed to match chains (seqid={0:.0f}%, '
                                 'overlap={1:.0f}%).'.format(_seqid, _cover))
        else:
            LOGGER.warning('Pairwise alignment could not be performed.')
    if not matches:
        return None
    subset = _SUBSETS[subset]
    for mi, result in enumerate(matches):
        match1, match2, _seqid, _cover, simpch1, simpch2 = result

        indices1 = []
        indices2 = []

        for i in range(len(match1)):
            ares = match1[i]
            bres = match2[i]

            if subset == 'ca':
                try:
                    aid = ares.getNames().tolist().index('CA')
                except ValueError:
                    aid = None
                try:
                    bid = bres.getNames().tolist().index('CA')
                    if aid is not None:
                        indices1.append(ares._indices[aid])
                        indices2.append(bres._indices[bid])
                except ValueError:
                    pass
            elif subset == 'bb':
                for bban in ('N', 'CA', 'C', 'O'):
                    try:
                        aid = ares.getNames().tolist().index(bban)
                    except ValueError:
                        continue
                    try:
                        bid = bres.getNames().tolist().index(bban)
                    except ValueError:
                        continue
                    else:
                        indices1.append(ares._indices[aid])
                        indices2.append(bres._indices[bid])
            elif subset == 'noh':
                for han, aid, noh in zip(ares.getNames(), ares._indices,
                                         ares.getFlags('noh')):
                    if not noh:
                        continue
                    try:
                        bid = bres.getNames().tolist().index(han)
                    except ValueError:
                        continue
                    else:
                        indices1.append(aid)
                        indices2.append(bres._indices[bid])
            elif subset is None or subset is 'all':
                aans = ares.getNames()
                bans = bres.getNames().tolist()

                aids = ares.getIndices()
                #bids = bres.getIndices()

                for j in range(len(aans)):
                    try:
                        bid = bres._indices[bans.index(aans[j])]
                        indices1.append(aids[j])
                        indices2.append(bid)
                    except ValueError:
                        pass

        indices1 = np.array(indices1, int)
        indices2 = np.array(indices2, int)

        match1 = AM(atoms1,
                    indices1,
                    atoms1.getACSIndex(),
                    title=simpch1.getTitle() + ' -> ' + simpch2.getTitle(),
                    intarrays=True)
        match2 = AM(atoms2,
                    indices2,
                    atoms2.getACSIndex(),
                    title=simpch2.getTitle() + ' -> ' + simpch1.getTitle(),
                    intarrays=True)

        matches[mi] = (match1, match2, _seqid, _cover)
    if len(matches) > 1:

        def compare(m1, m2):
            return cmp(m1[2], m2[2])

        matches.sort(compare, reverse=True)
    return matches
Ejemplo n.º 2
0
def mapOntoChain(atoms, chain, **kwargs):
    """Map *atoms* onto *chain*.  This function returns a list of mappings.
    Each mapping is a tuple that contains 4 items:

      * Mapped chain as an :class:`.AtomMap` instance,
      * *chain* as an :class:`.AtomMap` instance,
      * Percent sequence identitity,
      * Percent sequence overlap

    Mappings are returned in decreasing percent sequence identity order.
    :class:`.AtomMap` that keeps mapped atom indices contains dummy atoms
    in place of unmapped atoms.

    :arg atoms: atoms that will be mapped to the target *chain*
    :type atoms: :class:`.Chain`, :class:`.AtomGroup`, :class:`.Selection`

    :arg chain: chain to which atoms will be mapped
    :type chain: :class:`.Chain`

    :keyword subset: one of the following well-defined subsets of atoms:
        ``"calpha"`` (or ``"ca"``), ``"backbone"`` (or ``"bb"``),
        ``"heavy"`` (or ``"noh"``), or ``"all"``, default is ``"calpha"``
    :type subset: string

    :keyword seqid: percent sequence identity, default is 90
    :type seqid: float

    :keyword overlap: percent overlap, default is 90
    :type overlap: float

    :keyword pwalign: perform pairwise sequence alignment
    :type pwalign: bool

    :keyword fast: get rid of verbosity and just returns sequence identity. 
    :type fast: bool

    This function tries to map *atoms* to *chain* based on residue
    numbers and types. Each individual chain in *atoms* is compared to
    target *chain*. This works well for different structures of the same
    protein. When it fails, :mod:`Bio.pairwise2` is used for sequence
    alignment, and mapping is performed based on the sequence alignment.
    User can control, whether sequence alignment is performed or not with
    *pwalign* keyword. If ``pwalign=True`` is passed, pairwise alignment is
    enforced."""

    target_chain = chain
    if not isinstance(atoms, (AtomGroup, Chain, Selection)):
        raise TypeError('atoms must be an AtomGroup, a Chain, or a '
                        'Selection instance')
    if not isinstance(target_chain, Chain):
        raise TypeError('chain must be Chain instance')

    subset = str(kwargs.get('subset', 'calpha')).lower()
    if subset not in _SUBSETS:
        raise ValueError('{0} is not a valid subset argument'.format(
            str(subset)))
    seqid = kwargs.get('seqid', 90.)
    coverage = kwargs.get('overlap')
    if coverage is None:
        coverage = kwargs.get('coverage', 70.)
    pwalign = kwargs.get('pwalign', None)
    fast = kwargs.get('fast', False)

    if isinstance(atoms, Chain):
        chains = [atoms]
        map_ag = atoms.getAtomGroup()
    else:
        if isinstance(atoms, AtomGroup):
            map_ag = atoms
        else:
            map_ag = atoms.getAtomGroup()
        chains = list(atoms.getHierView().iterChains())
        LOGGER.debug('Evaluating {0}: {1} chains are identified'.format(
            str(atoms), len(chains)))

    if subset != 'all':
        target_chain = target_chain.select(subset).getHierView()[
            target_chain.getChid()]

    mappings = []
    unmapped = []
    target_ag = target_chain.getAtomGroup()
    simple_target = SimpleChain(target_chain, True)
    if fast is False:
        LOGGER.debug('Trying to map atoms based on residue numbers and '
                     'identities:')
    for chain in chains:
        simple_chain = SimpleChain(True)
        simple_chain.buildFromChain(chain)
        if len(simple_chain) == 0:
            if fast is False:
                LOGGER.debug(
                    '  Skipping {0}, which does not contain any amino '
                    'acid residues.'.format(simple_chain))
            continue
        if fast is False:
            LOGGER.debug('  Comparing {0} (len={1}) with {2}:'.format(
                simple_chain.getTitle(), len(simple_chain),
                simple_target.getTitle()))

        target_list, chain_list, n_match, n_mapped = getTrivialMapping(
            simple_target, simple_chain)
        if n_mapped > 0:
            _seqid = n_match * 100 / n_mapped
            _cover = n_mapped * 100 / max(len(simple_target),
                                          len(simple_chain))
        else:
            _seqid = 0
            _cover = 0

        if _seqid >= seqid and _cover >= coverage:
            if fast is False:
                LOGGER.debug('\tMapped: {0} residues match with {1:.0f}% '
                             'sequence identity and {2:.0f}% overlap.'.format(
                                 n_mapped, _seqid, _cover))
            mappings.append((target_list, chain_list, _seqid, _cover))
        else:
            if fast is False:
                LOGGER.debug(
                    '\tFailed to match chains based on residue numbers '
                    '(seqid={0:.0f}%, overlap={1:.0f}%).'.format(
                        _seqid, _cover))
            unmapped.append(simple_chain)

    if pwalign or (not mappings and (pwalign is None or pwalign)):
        LOGGER.debug(
            'Trying to map atoms based on {0} sequence alignment:'.format(
                ALIGNMENT_METHOD))
        for simple_chain in unmapped:
            LOGGER.debug('  Comparing {0} (len={1}) with {2}:'.format(
                simple_chain.getTitle(), len(simple_chain),
                simple_target.getTitle()))
            result = getAlignedMapping(simple_target, simple_chain)
            if result is not None:
                target_list, chain_list, n_match, n_mapped = result
                if n_mapped > 0:
                    _seqid = n_match * 100 / n_mapped
                    _cover = n_mapped * 100 / max(len(simple_target),
                                                  len(simple_chain))
                else:
                    _seqid = 0
                    _cover = 0
                if _seqid >= seqid and _cover >= coverage:
                    LOGGER.debug(
                        '\tMapped: {0} residues match with {1:.0f}%'
                        ' sequence identity and {2:.0f}% overlap.'.format(
                            n_mapped, _seqid, _cover))
                    mappings.append((target_list, chain_list, _seqid, _cover))
                else:
                    LOGGER.debug('\tFailed to match chains (seqid={0:.0f}%, '
                                 'overlap={1:.0f}%).'.format(_seqid, _cover))

    for mi, result in enumerate(mappings):
        residues_target, residues_chain, _seqid, _cover = result
        indices_target = []
        indices_chain = []
        indices_mapping = []
        indices_dummies = []
        counter = 0
        for i in range(len(residues_target)):
            res_tar = residues_target[i]
            res_chn = residues_chain[i]

            for atom_tar in res_tar:
                indices_target.append(atom_tar.getIndex())
                if res_chn is not None:
                    atom_chn = res_chn.getAtom(atom_tar.getName())
                    if atom_chn is not None:
                        indices_chain.append(atom_chn.getIndex())
                        indices_mapping.append(counter)
                    else:
                        indices_dummies.append(counter)
                else:
                    indices_dummies.append(counter)
                counter += 1
        #n_atoms = len(indices_target)

        ch_tar = next((r for r in residues_target if r is not None)).getChain()
        ch_chn = next((r for r in residues_chain if r is not None)).getChain()
        title_tar = 'Chain {0} from {1}'.format(
            ch_tar.getChid(),
            ch_tar.getAtomGroup().getTitle())
        title_chn = 'Chain {0} from {1}'.format(
            ch_chn.getChid(),
            ch_chn.getAtomGroup().getTitle())

        atommap = AM(map_ag,
                     indices_chain,
                     chain.getACSIndex(),
                     mapping=indices_mapping,
                     dummies=indices_dummies,
                     title=title_chn + ' -> ' + title_tar)
        selection = AM(target_ag,
                       indices_target,
                       target_chain.getACSIndex(),
                       title=title_tar + ' -> ' + title_chn,
                       intarrays=True)

        mappings[mi] = (atommap, selection, _seqid, _cover)
    if len(mappings) > 1:

        def compare(m1, m2):
            return cmp(m1[2], m2[2])

        mappings.sort(compare, reverse=True)
    return mappings
Ejemplo n.º 3
0
def mapOntoChain(atoms, chain, **kwargs):
    """Map *atoms* onto *chain*.  This function returns a list of mappings.
    Each mapping is a tuple that contains 4 items:

      * Mapped chain as an :class:`.AtomMap` instance,
      * *chain* as an :class:`.AtomMap` instance,
      * Percent sequence identitity,
      * Percent sequence overlap

    Mappings are returned in decreasing percent sequence identity order.
    :class:`.AtomMap` that keeps mapped atom indices contains dummy atoms
    in place of unmapped atoms.

    :arg atoms: atoms that will be mapped to the target *chain*
    :type atoms: :class:`.Chain`, :class:`.AtomGroup`, :class:`.Selection`

    :arg chain: chain to which atoms will be mapped
    :type chain: :class:`.Chain`

    :keyword subset: one of the following well-defined subsets of atoms:
        ``"calpha"`` (or ``"ca"``), ``"backbone"`` (or ``"bb"``),
        ``"heavy"`` (or ``"noh"``), or ``"all"``, default is ``"calpha"``
    :type subset: string

    :keyword seqid: percent sequence identity, default is **90** if sequence alignment is 
        performed, otherwise **0**
    :type seqid: float

    :keyword overlap: percent overlap, default is **70**
    :type overlap: float

    :keyword mapping: if ``"ce"`` or ``"cealign"``, then the CE algorithm [IS98]_ will be 
        performed. It can also be a list of prealigned sequences, a :class:`.MSA` instance,
        or a dict of indices such as that derived from a :class:`.DaliRecord`.
        If set to anything other than the options listed above, including the default value 
        (**None**), a simple mapping will be first attempted and if that failed 
        then sequence alignment with a function from :mod:`~Bio.pairwise2` will be used 
        unless *pwalign* is set to **False**, in which case the mapping will fail.
    :type mapping: list, str

    :keyword pwalign: if **True**, then pairwise sequence alignment will 
        be performed. If **False** then a simple mapping will be performed 
        based on residue numbers (as well as insertion codes). This will be 
        overridden by the *mapping* keyword's value. 
    :type pwalign: bool

    This function tries to map *atoms* to *chain* based on residue
    numbers and types. Each individual chain in *atoms* is compared to
    target *chain*.
    
    .. [IS98] Shindyalov IN, Bourne PE. Protein structure alignment by 
       incremental combinatorial extension (CE) of the optimal path. 
       *Protein engineering* **1998** 11(9):739-47.
    """

    if not isinstance(atoms, (AtomGroup, AtomSubset)):
        raise TypeError('atoms must be an AtomGroup or a AtomSubset instance')
    if not isinstance(chain, Chain):
        raise TypeError('chain must be Chain instance')

    subset = str(kwargs.get('subset', 'calpha')).lower()
    if subset not in _SUBSETS:
        raise ValueError('{0} is not a valid subset argument'.format(
            str(subset)))
    seqid = kwargs.get('seqid', 90.)
    coverage = kwargs.get('overlap', 70.)
    coverage = kwargs.get('coverage', coverage)
    pwalign = kwargs.get('pwalign', None)
    pwalign = kwargs.get('mapping', pwalign)
    alignment = None
    if pwalign is not None:
        if isinstance(pwalign, basestring):
            pwalign = str(pwalign).strip().lower()
        elif not isinstance(pwalign, bool):
            alignment = pwalign
            pwalign = True

    if subset != 'all':
        chid = chain.getChid()
        segname = chain.getSegname()
        chain_subset = chain.select(subset)
        target_chain = chain_subset.getHierView()[segname, chid]

        mobile = atoms.select(subset)
    else:
        target_chain = chain
        mobile = atoms

    if isinstance(mobile, Chain):
        chains = [mobile]
        map_ag = mobile.getAtomGroup()
    else:
        if isinstance(mobile, AtomGroup):
            map_ag = mobile
        else:
            map_ag = mobile.getAtomGroup()
        chains = list(mobile.getHierView().iterChains())
        LOGGER.debug('Evaluating {0}: {1} chains are identified'.format(
            str(atoms), len(chains)))

    mappings = []
    unmapped = []
    unmapped_chids = []
    target_ag = target_chain.getAtomGroup()
    simple_target = SimpleChain(target_chain, False)
    LOGGER.debug('Trying to map atoms based on residue numbers and '
                 'identities:')
    for chain in chains:
        simple_chain = SimpleChain(chain, False)
        if len(simple_chain) == 0:
            LOGGER.debug('  Skipping {0}, which does not contain any amino '
                         'acid residues.'.format(simple_chain))
            continue
        LOGGER.debug('  Comparing {0} (len={1}) with {2}:'.format(
            simple_chain.getTitle(), len(simple_chain),
            simple_target.getTitle()))

        # trivial mapping serves as a first simple trial of alignment the two
        # sequences based on residue number, therefore the sequence identity
        # (TRIVIAL_SEQID) criterion is strict.
        _seqid = _cover = -1
        target_list, chain_list, n_match, n_mapped = getTrivialMapping(
            simple_target, simple_chain)
        if n_mapped > 0:
            _seqid = n_match * 100 / n_mapped
            _cover = n_mapped * 100 / max(len(simple_target),
                                          len(simple_chain))

        trivial_seqid = TRIVIAL_SEQID if pwalign else seqid
        trivial_cover = TRIVIAL_COVERAGE if pwalign else coverage
        if _seqid >= trivial_seqid and _cover >= trivial_cover:
            LOGGER.debug('\tMapped: {0} residues match with {1:.0f}% '
                         'sequence identity and {2:.0f}% overlap.'.format(
                             n_mapped, _seqid, _cover))
            mappings.append((target_list, chain_list, _seqid, _cover))
        else:
            if not pwalign:
                LOGGER.debug(
                    '\tFailed to match chains based on residue numbers '
                    '(seqid={0:.0f}%, overlap={1:.0f}%).'.format(
                        _seqid, _cover))
            unmapped.append(simple_chain)
            unmapped_chids.append(chain.getChid())

    if not mappings and pwalign is None:
        pwalign = True

    if pwalign and unmapped:
        if alignment is None:
            if pwalign in ['ce', 'cealign']:
                aln_type = 'structure alignment'
                method = 'CE'
                if not 'seqid' in kwargs:
                    seqid = 0.
            else:
                aln_type = 'sequence alignment'
                method = ALIGNMENT_METHOD
        else:
            aln_type = 'alignment'
            method = 'predefined'
            if not 'seqid' in kwargs:
                seqid = 0.

        LOGGER.debug('Trying to map atoms based on {0} {1}:'.format(
            method, aln_type))

        for chid, simple_chain in zip(unmapped_chids, unmapped):
            LOGGER.debug('  Comparing {0} (len={1}) with {2}:'.format(
                simple_chain.getTitle(), len(simple_chain),
                simple_target.getTitle()))
            if method == 'CE':
                result = getCEAlignMapping(simple_target, simple_chain)
            else:
                if isinstance(alignment, dict):
                    result = getDictMapping(simple_target,
                                            simple_chain,
                                            map_dict=alignment)
                else:
                    result = getAlignedMapping(simple_target,
                                               simple_chain,
                                               alignment=alignment)

            if result is not None:
                target_list, chain_list, n_match, n_mapped = result
                if n_mapped > 0:
                    _seqid = n_match * 100 / n_mapped
                    _cover = n_mapped * 100 / max(len(simple_target),
                                                  len(simple_chain))
                else:
                    _seqid = 0
                    _cover = 0
                if _seqid >= seqid and _cover >= coverage:
                    LOGGER.debug(
                        '\tMapped: {0} residues match with {1:.0f}%'
                        ' sequence identity and {2:.0f}% overlap.'.format(
                            n_mapped, _seqid, _cover))
                    mappings.append((target_list, chain_list, _seqid, _cover))
                else:
                    LOGGER.debug('\tFailed to match chains (seqid={0:.0f}%, '
                                 'overlap={1:.0f}%).'.format(_seqid, _cover))

    for mi, result in enumerate(mappings):
        residues_target, residues_chain, _seqid, _cover = result
        indices_target = []
        indices_chain = []
        indices_mapping = []
        indices_dummies = []
        counter = 0
        for i in range(len(residues_target)):
            res_tar = residues_target[i]
            res_chn = residues_chain[i]

            for atom_tar in res_tar:
                indices_target.append(atom_tar.getIndex())
                if res_chn is not None:
                    atom_chn = res_chn.getAtom(atom_tar.getName())
                    if atom_chn is not None:
                        indices_chain.append(atom_chn.getIndex())
                        indices_mapping.append(counter)
                    else:
                        indices_dummies.append(counter)
                else:
                    indices_dummies.append(counter)
                counter += 1
        #n_atoms = len(indices_target)

        ch_tar = next((r for r in residues_target if r is not None)).getChain()
        ch_chn = next((r for r in residues_chain if r is not None)).getChain()
        title_tar = 'Chain {0} from {1}'.format(
            ch_tar.getChid(),
            ch_tar.getAtomGroup().getTitle())
        title_chn = 'Chain {0} from {1}'.format(
            ch_chn.getChid(),
            ch_chn.getAtomGroup().getTitle())

        # note that chain here is from atoms
        atommap = AM(map_ag,
                     indices_chain,
                     chain.getACSIndex(),
                     mapping=indices_mapping,
                     dummies=indices_dummies,
                     title=title_chn + ' -> ' + title_tar)
        selection = AM(target_ag,
                       indices_target,
                       target_chain.getACSIndex(),
                       title=title_tar + ' -> ' + title_chn,
                       intarrays=True)

        mappings[mi] = (atommap, selection, _seqid, _cover)
    if len(mappings) > 1:
        mappings.sort(key=lambda m: m[-2:], reverse=True)
    return mappings