Ejemplo n.º 1
0
    def _valid_args(self, image: Path, copy_style_image: Path, _output,
                    _resize, progress_dir: Path, _max_size) -> (bool, str):
        if not image.exists():
            raise InvalidCopyStyleArgs(
                "Given image path does not exist:\n\t{}".format(str(image)))

        if not copy_style_image.exists():
            raise InvalidCopyStyleArgs(
                "Given image path does not exist:\n\t{}".format(
                    str(copy_style_image)))

        if not progress_dir.exists():
            eprint("Created new directory:\n\t" + str(progress_dir))
            progress_dir.mkdir(parents=True, exist_ok=True)

        return (True, "")
Ejemplo n.º 2
0
        def closure():
            # correct the values of updated input image
            input_img.data.clamp_(0, 1)

            optimizer.zero_grad()
            model(input_img)
            style_score = 0
            content_score = 0

            for sl in style_losses:
                style_score += sl.loss
            for cl in content_losses:
                content_score += cl.loss

            style_score *= style_weight
            content_score *= content_weight

            loss = style_score + content_score
            loss.backward()

            run[0] += 1
            if run[0] % 50 == 0:
                eprint("run {}:".format(run))
                eprint("Style Loss : {:4f} Content Loss: {:4f}".format(
                    style_score.item(), content_score.item()))
                eprint()
                if progress_dir:
                    filename = Path(progress_dir,
                                    'progress-{}.png'.format(run[0]))
                    save_image(input_img, filename)

            return style_score + content_score
Ejemplo n.º 3
0
def main():
    start = time.time()
    parser = argparse.ArgumentParser(description="Copy art styles to images")
    parser.add_argument("IMAGE", help="the image you want transformed")
    parser.add_argument("-s",
                        "--style",
                        help="the piece where the style is copied from",
                        required=True)
    parser.add_argument(
        "-o",
        "--output",
        help=
        "the output file. If this is not provided then [IMAGE].style-copied is used",
        required=True,
    )
    parser.add_argument("-r",
                        "--resize",
                        help="resize the image to the copy image",
                        action="store_true")
    parser.add_argument("-p",
                        "--progress",
                        help="directory to output progress")
    parser.add_argument("-m",
                        "--max-size",
                        help="use IMSIZE 512 regarldess of GPU availibilyt",
                        action="store_true")

    args = parser.parse_args()
    image = args.IMAGE
    resize = args.resize
    style_image = args.style
    progress_dir = args.progress
    max_size = args.max_size
    error = 0
    if not image:
        eprint("Image cannot be empty!")
        sys.exit(1)
    if not style_image:
        eprint("Copy cannot be empty!")
        sys.exit(1)

    try:
        args = CopyStyleArgs(image,
                             style_image,
                             output=args.output,
                             resize=resize,
                             progress_dir=progress_dir,
                             max_size=max_size)
        run(args)
    except Exception as e:
        error = 1
        eprint(str(e))
        traceback.print_exc()

    if error == 1:
        sys.exit(error)
    end = time.time()
    print("Time elapsed: " + str(end - start) + "seconds")
Ejemplo n.º 4
0
def run_style_transfer(
    cnn,
    normalization_mean,
    normalization_std,
    content_img,
    style_img,
    input_img,
    num_steps=300,
    style_weight=1000000,
    content_weight=1,
    progress_dir: Path = None,
) -> FloatTensor:
    """Run the style transfer."""
    eprint("Building the style transfer model..")
    model, style_losses, content_losses = get_style_model_and_losses(
        cnn, normalization_mean, normalization_std, style_img, content_img)
    optimizer = get_input_optimizer(input_img)

    eprint("Optimizing..")
    run = [0]
    while run[0] <= num_steps:

        def closure():
            # correct the values of updated input image
            input_img.data.clamp_(0, 1)

            optimizer.zero_grad()
            model(input_img)
            style_score = 0
            content_score = 0

            for sl in style_losses:
                style_score += sl.loss
            for cl in content_losses:
                content_score += cl.loss

            style_score *= style_weight
            content_score *= content_weight

            loss = style_score + content_score
            loss.backward()

            run[0] += 1
            if run[0] % 50 == 0:
                eprint("run {}:".format(run))
                eprint("Style Loss : {:4f} Content Loss: {:4f}".format(
                    style_score.item(), content_score.item()))
                eprint()
                if progress_dir:
                    filename = Path(progress_dir,
                                    'progress-{}.png'.format(run[0]))
                    save_image(input_img, filename)

            return style_score + content_score

        optimizer.step(closure)

    # a last correction...
    input_img.data.clamp_(0, 1)

    return input_img
Ejemplo n.º 5
0
def _imsize(use_large=False):
    if use_large:
        eprint("Using image size of {0} instead of {1}".format(_LARGE, _SMALL))
        return _LARGE
    has_gpu = torch.cuda.is_available()
    return _LARGE if has_gpu else _SMALL