Ejemplo n.º 1
0
def primal_dual_simplex_solver(z_starN, matrix_B, matrix_N, x_star_b, b, c,
                               Beta, Nu, optimal_value):
    """Primal Problem solver."""
    # Step 1: Convert z*N to nonnegative to make it Dual Feasible
    temp_c = -1 * np.ones((len(c), 1))
    z_starN = -1 * temp_c
    z_starN, x_star_b, matrix_B, matrix_N, Nu, Beta, sol = pt2.dual_simplex_solver(
        x_star_b, matrix_B, matrix_N, z_starN, b, temp_c, Beta, Nu,
        optimal_value)

    A_matrix = -1 * np.dot(linalg.inv(matrix_B), matrix_N)

    row_matrix_a = []
    indices_rows_matrix_a = []
    # First Loop to pull x*B and corresponding A matrix row for the decision variables
    # and multiply them to their coefficients in the objective function.
    for i in range(len(c)):
        if i + 1 in Beta:
            index = np.where(Beta == i + 1)
            optimal_value += c[i] * x_star_b[index].squeeze()
            row_matrix_a.append(c[i] * (A_matrix[index, :].squeeze()))
            indices_rows_matrix_a.append(Nu)
    indices_rows_matrix_a = np.asarray(indices_rows_matrix_a)
    array_row_matrix_a = np.asarray(row_matrix_a)
    summed_array_to_substitute = []
    # Second Loop to check if we have multiple rows pulled out from matrix_a. Then check the
    # coefficients for the same decision variables and then add them.
    for i in indices_rows_matrix_a[0, :]:
        temp = 0
        item = np.where(indices_rows_matrix_a == i)
        temp += np.sum(array_row_matrix_a[item].squeeze())
        if array_row_matrix_a[item].size != 0:
            summed_array_to_substitute.append(temp)

    # Now we got the summed array for the rows we substituted in original objective
    # So, Third Loop is to check and sum if we have multiple coefficients for the same
    # decision variables in this new objective function.
    summed_array_to_substitute = np.asarray(summed_array_to_substitute)
    for i in range(1, len(Nu) + 1):
        item = np.where(Nu == i)
        temp_sum = summed_array_to_substitute[item].squeeze(
        ) + c[item].squeeze()
        if temp_sum.size != 0:
            temp_c[i - 1] = summed_array_to_substitute[item].squeeze(
            ) + c[item].squeeze()
        else:
            temp_c[i - 1] = summed_array_to_substitute[i - 1].squeeze()
    z_starN = -1 * temp_c
    if np.min(z_starN) >= 0.0:
        print "\t[Optimal Solution found]"
        print "Optimal Solution is: ", optimal_value
        print "z*N: \n", z_starN
    else:
        pt1.primal_simplex_solver(z_starN, matrix_B, matrix_N, x_star_b, b, c,
                                  Beta, Nu, optimal_value)
    return z_starN, x_star_b, matrix_B, matrix_N, Nu, Beta, optimal_value
Ejemplo n.º 2
0
 def test_3_certificate_of_optimality(self):
     """Check for Primal Optimal Solution."""
     print "Solving by Primal Simplex."
     z_starN1, x_star_b1, matrix_B1, matrix_N1, Nu1, Beta1, opt_value1 = pt1.primal_simplex_solver(
         self.z_star_n, self.matrix_B, self.matrix_N, self.x_starB, self.b,
         self.c, self.Beta, self.Nu, self.objective)
     self.assertAlmostEqual(self.optimal_solution, opt_value1, 3)
     self.assertAlmostEqual(self.x_b_solution.all(), x_star_b1.all(), 3)
     self.assertAlmostEqual(self.z_n_solution.all(), z_starN1.all(), 3)
Ejemplo n.º 3
0
def primal_dual_simplex_solver(z_starN, matrix_B, matrix_N, x_star_b, b, c,
                               Beta, Nu, optimal_value):
    """Primal Problem solver."""
    # step 1
    z_starN = np.absolute(z_starN)
    z_starN, x_star_b, matrix_B, matrix_N, Beta, sol = pt2.dual_simplex_solver(
        x_star_b, matrix_B, matrix_N, z_starN, b, c, Beta, Nu)
    A_matrix = -1 * np.dot(linalg.inv(matrix_B), matrix_N)
    # print "A_matrix: ", A_matrix
    # optimal_value = 0
    arr = []
    index_arr = []
    for i in range(len(c)):
        if i + 1 in Beta:
            index = np.where(Beta == i + 1)
            optimal_value += c[i] * x_star_b[index].squeeze()
            arr.append(c[i] * (A_matrix[index, :].squeeze()))
            index_arr.append(Nu)
    index_arr = np.asarray(index_arr)
    arr_indx = np.asarray(arr)
    another_arr = []
    for i in index_arr[0, :]:
        sumo = 0
        item = np.where(index_arr == i)
        sumo += np.sum(arr_indx[item].squeeze())
        if arr_indx[item].size != 0:
            another_arr.append(sumo)

    another_arr = np.asarray(another_arr)
    for i in range(1, len(Nu) + 1):
        item = np.where(Nu == i)
        sume = another_arr[item].squeeze() + c[item].squeeze()
        if sume.size != 0:
            z_starN[i - 1] = another_arr[item].squeeze() + c[item].squeeze()
        else:
            z_starN[i - 1] = another_arr[i - 1].squeeze()
    if np.min(z_starN) >= 0.0:
        print "Optimal Solution: ", optimal_value, z_starN
    else:
        c = 1 * z_starN
        pt1.primal_simplex_solver(z_starN, matrix_B, matrix_N, x_star_b, b, c,
                                  Beta, Nu)
    return z_starN, x_star_b, matrix_B, matrix_N, Beta, optimal_value
Ejemplo n.º 4
0
 def test_3_primal_solution(self):
     """Check for Primal Optimal Solution."""
     print "Solving by Primal Simplex."
     z_starN1, x_star_b1, matrix_B1, matrix_N1, Nu1, Beta1, opt_value1 = pt1.primal_simplex_solver(
         self.z_star_n, self.matrix_B, self.matrix_N, self.x_starB, self.b,
         self.c, self.Beta, self.Nu, self.objective)
     xb = np.dot(linalg.inv(matrix_B1), self.b)
     self.assertEqual(xb.all(), x_star_b1.all(), msg="x*b != inv(B) * b")
     self.assertGreaterEqual(z_starN1.all(), 0.00000)
     self.assertAlmostEqual(self.optimal_solution, opt_value1, 3)
     self.assertAlmostEqual(self.x_b_solution.all(), x_star_b1.all(), 3)
     self.assertAlmostEqual(self.z_n_solution.all(), z_starN1.all(), 3)
     self.assertAlmostEqual(self.b_solution.all(), matrix_B1.all(), 3)
     self.assertAlmostEqual(self.n_solution.all(), matrix_N1.all(), 3)
     self.assertEqual(all(self.beta_solution), all(Beta1))
     self.assertEqual(all(self.nu_solution), all(Nu1))
Ejemplo n.º 5
0
 def test_3_complementary_slackness(self):
     """Check for Complementary Slackness."""
     print "Solving by Primal Simplex."
     z_starN1, x_star_b1, matrix_B1, matrix_N1, Nu1, Beta1, opt_value1 = pt1.primal_simplex_solver(self.z_star_n, self.matrix_B, self.matrix_N, self.x_starB, self.b, self.c, self.Beta, self.Nu, self.objective)
     self.assertEqual(all(self.beta_solution), all(Beta1))
     self.assertEqual(all(self.nu_solution), all(Nu1))
Ejemplo n.º 6
0
    def __init__(self, parent=None):
        """The start point."""
        parser = argparse.ArgumentParser(description='Linear Program Solver.')
        parser.add_argument('A_csv', help='The csv for A matrix.')
        parser.add_argument('b_csv', help='The csv for b vector.')
        parser.add_argument('c_csv', help='The csv for c vector.')
        args = parser.parse_args()

        # Fetch the data for A matrix
        data_a = csv.reader(open(args.A_csv, 'rb'))
        a = []
        for row in data_a:
            a.append(row)
        rows_a = len(a)
        cols_a = len(row)
        a = np.array([a]).reshape(rows_a, cols_a).astype(np.float)

        # Fetch the data for b vector
        data_b = csv.reader(open(args.b_csv, 'rb'))
        self.b = []
        for row in data_b:
            self.b.append(row)
        rows_b = len(self.b)
        cols_b = len(row)
        self.b = np.array([self.b]).reshape(rows_b, cols_b).astype(np.float)

        # Fetch the data for c vector
        data_c = csv.reader(open(args.c_csv, 'rb'))
        self.c = []
        for row in data_c:
            self.c.append(row)
        rows_c = len(self.c)
        cols_c = len(row)
        self.c = np.array([self.c]).reshape(rows_c, cols_c).astype(np.float)

        self.Nu = np.arange(1, rows_c + 1)
        self.Beta = np.arange(len(self.Nu) + 1, rows_b + len(self.Nu) + 1)

        split_a = np.hsplit(a, [rows_c, rows_b + rows_c])
        matrix_N = split_a[0]
        matrix_B = split_a[1]
        rows_N, cols_N = np.shape(matrix_N)
        rows_B, cols_B = np.shape(matrix_B)

        # Check for matrices consistency
        if cols_N == rows_c and rows_a == rows_b == rows_B == cols_B == rows_N:
            print("Everything is consistent!")
        else:
            print("[Error]: Data is inconsistent! Check the CSVs.")
            sys.exit()

        x_starB = self.b
        z_star_n = -1 * self.c
        objective = 0

        # For Primal Infeasibility
        if min(x_starB) < 0.0 and min(z_star_n) >= 0.0:
            print "[Error]: The problem is Primal Infeasible."
            print "So, performing Dual Simplex Method..."
            pt2.dual_simplex_solver(x_starB, matrix_B, matrix_N, z_star_n, self.b, self.c, self.Beta, self.Nu, objective)
            sys.exit()

        # For Dual Infeasibility
        if min(z_star_n) < 0.0 and min(x_starB) >= 0.0:
            print "[Error]: The problem is Dual Infeasible."
            print "So, performing Primal Simplex Method..."
            pt1.primal_simplex_solver(z_star_n, matrix_B, matrix_N, x_starB, self.b, self.c, self.Beta, self.Nu, objective)
            sys.exit()

        # For Dual and Primal Infeasibility
        if min(z_star_n) < 0.0 and min(x_starB) < 0.0:
            print "The problem is Dual and Primal Infeasible."
            pt3.primal_dual_simplex_solver(z_star_n, matrix_B, matrix_N, x_starB, self.b, self.c, self.Beta, self.Nu, objective)
            sys.exit()