Ejemplo n.º 1
0
    def from_propositional_skeleton(skeleton: PropositionalFormula,
                                    substitution_map: Mapping[str, Formula]) -> \
            Formula:
        """Computes a first-order formula from a propositional skeleton and a
        substitution map.

        Arguments:
            skeleton: propositional skeleton for the formula to compute.
            substitution_map: a map from each atomic propositional subformula
                of the given skeleton to a first-order formula.

        Returns:
            A first-order formula obtained from the given propositional skeleton
            by substituting each atomic propositional subformula with the formula
            mapped to it by the given map.
        """
        for key in substitution_map:
            assert is_propositional_variable(key)
        # Task 9.10
        if is_propositional_variable(skeleton.root):
            if skeleton.root not in substitution_map:
                assert (False)
            return substitution_map[skeleton.root]
        if is_unary(skeleton.root):
            return Formula(
                skeleton.root,
                Formula.from_propositional_skeleton(skeleton.first,
                                                    substitution_map))
        if is_binary(skeleton.root):
            return Formula(
                skeleton.root,
                Formula.from_propositional_skeleton(skeleton.first,
                                                    substitution_map),
                Formula.from_propositional_skeleton(skeleton.second,
                                                    substitution_map))
Ejemplo n.º 2
0
    def from_propositional_skeleton(skeleton: PropositionalFormula,
                                    substitution_map: Mapping[str, Formula]) -> \
            Formula:
        """Computes a first-order formula from a propositional skeleton and a
        substitution map.

        Arguments:
            skeleton: propositional skeleton for the formula to compute.
            substitution_map: a map from each atomic propositional subformula
                of the given skeleton to a first-order formula.

        Returns:
            A first-order formula obtained from the given propositional skeleton
            by substituting each atomic propositional subformula with the formula
            mapped to it by the given map.
        """
        for key in substitution_map:
            assert is_propositional_variable(key)
        # Task 9.10
        # recursively go down the formula and return the predicate formula

        # base case, we reach a term
        if is_propositional_variable(skeleton.root):
            if skeleton.root in substitution_map.keys():
                return substitution_map[skeleton.root]

        # recursive unary case
        if is_unary(skeleton.root):
            return Formula(skeleton.root, Formula.from_propositional_skeleton(skeleton.first, substitution_map))

        # recursive binary case
        if is_binary(skeleton.root):
            return Formula(skeleton.root, Formula.from_propositional_skeleton(skeleton.first, substitution_map),
                           Formula.from_propositional_skeleton(skeleton.second, substitution_map))
Ejemplo n.º 3
0
 def from_propositional_skeleton(skeleton, substitution_map):
     """ Return a first-order predicate logic formula obtained from the given
         propositional skeleton by substituting each variable with the
         formula mapped to it by substitution_map """
     assert type(skeleton) is PropositionalFormula
     assert type(substitution_map) is dict
     for key in substitution_map:
         assert is_propositional_variable(key) and \
                type(substitution_map[key]) is Formula
Ejemplo n.º 4
0
    def from_propositional_skeleton(skeleton: PropositionalFormula,
                                    substitution_map: Mapping[str, Formula]) -> \
            Formula:
        """Computes a first-order formula from a propositional skeleton and a
        substitution map.

        Arguments:
            skeleton: propositional skeleton for the formula to compute.
            substitution_map: a map from each atomic propositional subformula
                of the given skeleton to a first-order formula.

        Returns:
            A first-order formula obtained from the given propositional skeleton
            by substituting each atomic propositional subformula with the formula
            mapped to it by the given map.
        """
        for key in substitution_map:
            assert is_propositional_variable(key)
Ejemplo n.º 5
0
    def from_propositional_skeleton(skeleton: PropositionalFormula,
                                    substitution_map: Mapping[str, Formula]) -> \
            Formula:
        """Computes a predicate-logic formula from a propositional skeleton and
        a substitution map.

        Arguments:
            skeleton: propositional skeleton for the formula to compute,
                containing no constants or operators beyond ``'~'``, ``'->'``,
                ``'|'``, and ``'&'``.
            substitution_map: mapping from each atomic propositional subformula
                of the given skeleton to a predicate-logic formula.

        Returns:
            A predicate-logic formula obtained from the given propositional
            skeleton by substituting each atomic propositional subformula with
            the formula mapped to it by the given map.

        Examples:
            >>> Formula.from_propositional_skeleton(
            ...     PropositionalFormula.parse('((z1&z2)|(z2->~z3))'),
            ...     {'z1': Formula.parse('Ax[x=7]'), 'z2': Formula.parse('x=7'),
            ...      'z3': Formula.parse('Q(y)')})
            ((Ax[x=7]&x=7)|(x=7->~Q(y)))
        """
        for operator in skeleton.operators():
            assert is_unary(operator) or is_binary(operator)
        for variable in skeleton.variables():
            assert variable in substitution_map
        if is_propositional_variable(skeleton.root):
            return substitution_map[skeleton.root]
        formula = None
        if is_binary(skeleton.root):
            formula1 = Formula.from_propositional_skeleton(skeleton.first, substitution_map)
            formula2 = Formula.from_propositional_skeleton(skeleton.second, substitution_map)
            formula = Formula(skeleton.root, formula1, formula2)
        if is_unary(skeleton.root):
            formula1 = Formula.from_propositional_skeleton(skeleton.first, substitution_map)
            formula = Formula(skeleton.root, formula1)
        return formula
Ejemplo n.º 6
0
    def from_propositional_skeleton(skeleton: PropositionalFormula,
                                    substitution_map: Mapping[str, Formula]) -> \
            Formula:
        """Computes a first-order formula from a propositional skeleton and a
        substitution map.

        Arguments:
            skeleton: propositional skeleton for the formula to compute.
            substitution_map: a map from each atomic propositional subformula
                of the given skeleton to a first-order formula.

        Returns:
            A first-order formula obtained from the given propositional skeleton
            by substituting each atomic propositional subformula with the formula
            mapped to it by the given map.
        """
        for key in substitution_map:
            assert is_propositional_variable(key)

        node_type = skeleton.getType()
        if node_type is PropositionalFormula.NodeType.T_UNARY_OP:
            # Parse the lhs
            lhs = Formula.from_propositional_skeleton(skeleton.first,
                                                      substitution_map)
            return Formula(skeleton.root, lhs)
        elif node_type is PropositionalFormula.NodeType.T_BINARY_OP:
            # Parse the lhs and rhs
            lhs = Formula.from_propositional_skeleton(skeleton.first,
                                                      substitution_map)
            rhs = Formula.from_propositional_skeleton(skeleton.second,
                                                      substitution_map)
            return Formula(skeleton.root, lhs, rhs)
        elif node_type is PropositionalFormula.NodeType.T_VAR:
            # Return the substituted variable, if we got one
            if skeleton.root in substitution_map:
                return substitution_map[skeleton.root]

        # Use the original value
        return skeleton