Ejemplo n.º 1
0
def get_corrvox_gs(data_ts,head_mask, regions):
    # remove GS
    cf_rm = ConfoundsRm(data_ts[head_mask].mean(0).reshape(-1,1),data_ts[head_mask].T,intercept=False)
    data_ts[head_mask] = cf_rm.transform(data_ts[head_mask].mean(0).reshape(-1,1),data_ts[head_mask].T).T
    # extract time series
    ts_regions = ts.get_ts(data_ts,regions)
    ts_allvox = data_ts[head_mask]
    # compute correlations
    return ts.corr(ts_regions,ts_allvox)
Ejemplo n.º 2
0
def get_corrvox_gs(data_ts, head_mask, regions):
    # remove GS
    cf_rm = ConfoundsRm(data_ts[head_mask].mean(0).reshape(-1, 1), data_ts[head_mask].T, intercept=False)
    data_ts[head_mask] = cf_rm.transform(data_ts[head_mask].mean(0).reshape(-1, 1), data_ts[head_mask].T).T
    # extract time series
    ts_regions = ts.get_ts(data_ts, regions)
    ts_allvox = data_ts[head_mask]
    # compute correlations
    return ts.corr(ts_regions, ts_allvox)
Ejemplo n.º 3
0
def get_corrvox_std(data_ts,head_mask, regions):
    # extract time series std
    ts_regions = ts.get_ts(data_ts,regions,metric='std')
    ts_allvox = data_ts[head_mask]
    # compute correlations
    return ts.corr(ts_regions,ts_allvox)
Ejemplo n.º 4
0
def get_corrvox_std(data_ts, head_mask, regions):
    # extract time series std
    ts_regions = ts.get_ts(data_ts, regions, metric='std')
    ts_allvox = data_ts[head_mask]
    # compute correlations
    return ts.corr(ts_regions, ts_allvox)