from proveit import Etcetera from proveit.logic import Forall, InSet, Equals, NotEquals, Implies from proveit.number import Integers, NaturalsPos, Reals, RealsPos, Complexes from proveit.number import Divide, frac, Add, Sub, Sum, Mult, Exp from proveit.common import a, b, c, n, w, x, y, z, P, S, xMulti, wEtc, xEtc, yEtc, zEtc, PyEtc from proveit.number.common import zero, one, ComplexesSansZero from proveit import beginTheorems, endTheorems beginTheorems(locals()) divideRealClosure = Forall([a, b], InSet(Divide(a, b), Reals), domain=Reals, conditions=[NotEquals(b, zero)]) divideRealClosure divideRealPosClosure = Forall([a, b], InSet(Divide(a, b), RealsPos), domain=RealsPos, conditions=[NotEquals(b, zero)]) divideRealPosClosure fractionRealClosure = Forall([a, b], InSet(frac(a, b), Reals), domain=Reals, conditions=[NotEquals(b, zero)]) fractionRealClosure fractionPosClosure = Forall([a, b], InSet(frac(a, b), RealsPos), domain=RealsPos,