Ejemplo n.º 1
0
                            ps = Dlth[spec] + flth[:lmax]

                        if kind == "cross":
                            ps_th[spec] = ps
                        elif kind == "noise":
                            ps_th[spec] = nlth[spec]
                        elif kind == "auto":
                            ns = len(d["maps_%s_%s" % (sv1, ar1)])

                            ps_th[spec] = ps + nlth[spec] * ns

                    theory[sv1, ar1, sv2, ar2, kind] = ps_th
                    bin_theory[sv1, ar1, sv2, ar2,
                               kind] = so_mcm.apply_Bbl(Bbl,
                                                        ps_th,
                                                        spectra=spectra)

os.system("cp %s/multistep2.js %s/multistep2.js" % (multistep_path, plot_dir))
filename = "%s/SO_spectra.html" % plot_dir
g = open(filename, mode='w')
g.write('<html>\n')
g.write('<head>\n')
g.write('<title> SO spectra </title>\n')
g.write('<script src="multistep2.js"></script>\n')
g.write('<script> add_step("sub", ["c","v"]) </script> \n')
g.write('<script> add_step("all", ["j","k"]) </script> \n')
g.write('<script> add_step("type", ["a","z"]) </script> \n')
g.write('</head> \n')
g.write('<body> \n')
g.write('<div class=sub> \n')
Ejemplo n.º 2
0
                    continue

                spec_name = "%s_%s_%sx%s_%s" % (type, sv1, ar1, sv2, ar2)
                lb, Db = so_spectra.read_ps(
                    spec_dir + "/%s_cross_00000.dat" % spec_name, spectra=spectra
                )

                if chi2_with_respect_to_theory:
                    spin_pairs = ["spin0xspin0", "spin0xspin2", "spin2xspin0", "spin2xspin2"]
                    clfile = "%s/lcdm.dat" % bestfit_dir
                    lth, Dlth = pspy_utils.ps_lensed_theory_to_dict(
                        clfile, output_type=type, lmax=lmax, start_at_zero=False
                    )
                    prefix = "%s/%s_%sx%s_%s" % (mcm_dir, sv1, ar1, sv2, ar2)
                    mbb_inv, Bbl = so_mcm.read_coupling(prefix=prefix, spin_pairs=spin_pairs)
                    Db_th = so_mcm.apply_Bbl(Bbl, Dlth, spectra=spectra)

                n_bins = len(lb)
                cov = cov_EB[
                    spec_id * n_bins : (spec_id + 1) * n_bins,
                    spec_id * n_bins : (spec_id + 1) * n_bins,
                ]
                # Let's only use the diagonal element (the rest is too noisy given the number of sim)
                cov = np.diag(np.diagonal(cov))
                inv_cov = np.linalg.inv(cov)

                # This bit is doing a mcmc fit for alpha
                def compute_loglike_data(alpha):
                    chi2 = compute_chi2_data(Db, inv_cov, alpha)
                    return -0.5 * chi2
Ejemplo n.º 3
0
                                flth_all = 0
                                for foreground in fg_components[spec.lower()]:
                                    l, flth = np.loadtxt("%s/%s_%s_%sx%s.dat" % (fg_dir,spec.lower(), foreground, f1, f2)
                                                        ,unpack=True)
                                    flth_all += flth[:lmax]
                                ps = Dlth[spec] + flth_all

                        if kind == "cross":
                            ps_th[spec] = ps
                        elif kind == "noise":
                            ps_th[spec] = nlth[spec] * lth**2 / (2 * np.pi)
                        elif kind == "auto":
                            ps_th[spec] = ps + nlth[spec] * lth**2 / (2 * np.pi) * ns[exp1]

                    theory[exp1, f1, exp2, f2, kind] = ps_th
                    bin_theory[exp1, f1, exp2, f2, kind] = so_mcm.apply_Bbl(Bbl, ps_th, spectra=spectra)


os.system("cp %s/multistep2.js %s/multistep2.js" % (multistep_path, plot_dir))
filename = "%s/SO_spectra.html" % plot_dir
g = open(filename, mode='w')
g.write('<html>\n')
g.write('<head>\n')
g.write('<title> SO spectra </title>\n')
g.write('<script src="multistep2.js"></script>\n')
g.write('<script> add_step("sub", ["c","v"]) </script> \n')
g.write('<script> add_step("all", ["j","k"]) </script> \n')
g.write('<script> add_step("type", ["a","z"]) </script> \n')
g.write('</head> \n')
g.write('<body> \n')
g.write('<div class=sub> \n')
Ejemplo n.º 4
0
    # we will compare simulation power spectrum to theory
    # we need to add foreground in TT

    lth, Dlth = pspy_utils.ps_lensed_theory_to_dict(clfile,
                                                    output_type=type,
                                                    lmax=lmax,
                                                    start_at_zero=False)
    n1, n2 = spec.split("x")
    nu_eff_1 = d["nu_eff_%s" % (n1)]
    nu_eff_2 = d["nu_eff_%s" % (n2)]
    _, flth = np.loadtxt("%s/fg_%sx%s_TT.dat" %
                         (bestfit_dir, nu_eff_1, nu_eff_2),
                         unpack=True)
    Dlth["TT"] = Dlth["TT"] + flth[:lmax]

    bin_theory = so_mcm.apply_Bbl(Bbl, Dlth, spectra=spectra)

    mean, std = {}, {}

    for spectrum in ["TT", "EE", "BB"]:

        nofilt_list = []
        filt_list = []
        tf_list = []

        for iii in range(iStart, iStop):

            spec_name_no_filter = "%s_%s_nofilter_standard_%05d" % (type, spec,
                                                                    iii)
            spec_name_filter = "%s_%s_filter_standard_%05d" % (type, spec, iii)