Ejemplo n.º 1
0
    def test_LCA_length_2(self):

        T = TransferMechanism(function=Linear(slope=1.0), size=2)
        L = LCA(function=Linear(slope=2.0),
                size=2,
                self_excitation=3.0,
                leak=0.5,
                competition=1.0,
                time_step_size=0.1)
        P = Process(pathway=[T, L])
        S = System(processes=[P])

        #  - - - - - - - Equations to be executed  - - - - - - -

        # new_transfer_input =
        # previous_transfer_input
        # + (leak * previous_transfer_input_1 + self_excitation * result1 + competition * result2 + outside_input1) * dt
        # + noise

        # result = new_transfer_input*2.0

        # recurrent_matrix = [[3.0]]

        #  - - - - - - - - - - - - - -  - - - - - - - - - - - -

        results = []

        def record_execution():
            results.append(L.value[0])

        S.run(inputs={T: [1.0, 2.0]},
              num_trials=3,
              call_after_trial=record_execution)

        # - - - - - - - TRIAL 1 - - - - - - -

        # new_transfer_input_1 = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 - 1.0*0.0 + 1.0)*0.1 + 0.0    =    0.1
        # f(new_transfer_input_1) = 0.1 * 2.0 = 0.2

        # new_transfer_input_2 = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 - 1.0*0.0 + 2.0)*0.1 + 0.0    =    0.2
        # f(new_transfer_input_2) = 0.2 * 2.0 = 0.4

        # - - - - - - - TRIAL 2 - - - - - - -

        # new_transfer_input = 0.1 + ( 0.5 * 0.1 + 3.0 * 0.2 - 1.0*0.4 + 1.0)*0.1 + 0.0    =    0.225
        # f(new_transfer_input) = 0.265 * 2.0 = 0.45

        # new_transfer_input_2 = 0.2 + ( 0.5 * 0.2 + 3.0 * 0.4 - 1.0*0.2 + 2.0)*0.1 + 0.0    =    0.51
        # f(new_transfer_input_2) = 0.1 * 2.0 = 1.02

        # - - - - - - - TRIAL 3 - - - - - - -

        # new_transfer_input = 0.225 + ( 0.5 * 0.225 + 3.0 * 0.45 - 1.0*1.02 + 1.0)*0.1 + 0.0    =    0.36925
        # f(new_transfer_input) = 0.36925 * 2.0 = 0.7385

        # new_transfer_input_2 = 0.51 + ( 0.5 * 0.51 + 3.0 * 1.02 - 1.0*0.45 + 2.0)*0.1 + 0.0    =    0.9965
        # f(new_transfer_input_2) = 0.9965 * 2.0 = 1.463

        assert np.allclose(results,
                           [[0.2, 0.4], [0.45, 1.02], [0.7385, 1.993]])
    def test_initial_values_softmax(self):
        T = TransferMechanism(default_variable=[[0.0, 0.0], [0.0, 0.0]],
                              function=SoftMax(),
                              integrator_mode=True,
                              integration_rate=0.5,
                              initial_value=[[1.0, 2.0], [3.0, 4.0]])
        T2 = TransferMechanism()
        P = Process(pathway=[T, T2])
        S = System(processes=[P])

        S.run(inputs={T: [[1.5, 2.5], [3.5, 4.5]]})

        result = T.value
        # Expected results
        # integrator function:
        # input = [[1.5, 2.5], [3.5, 4.5]]  |  output = [[1.25, 2.25]], [3.25, 4.25]]
        integrator_fn = AdaptiveIntegrator(rate=0.5,
                                           default_variable=[[0.0, 0.0], [0.0, 0.0]],
                                           initializer=[[1.0, 2.0], [3.0, 4.0]])
        expected_result_integrator = integrator_fn.function([[1.5, 2.5], [3.5, 4.5]])

        S1 = SoftMax()
        expected_result_s1 = S1.function([[1.25, 2.25]])

        S2 = SoftMax()
        expected_result_s2 = S2.function([[3.25, 4.25]])

        assert np.allclose(expected_result_integrator, T.integrator_function_value)
        assert np.allclose(expected_result_s1, result[0])
        assert np.allclose(expected_result_s2, result[1])
Ejemplo n.º 3
0
    def test_previous_value_stored(self):
        G = LCA(integrator_mode=True,
                leak=-1.0,
                noise=0.0,
                time_step_size=0.02,
                function=Linear(slope=2.0),
                self_excitation=1.0,
                competition=-1.0,
                initial_value=np.array([[1.0]]))

        P = Process(pathway=[G])
        S = System(processes=[P])
        G.output_state.value = [0.0]

        # - - - - - LCA integrator functions - - - - -
        # X = previous_value + (rate * previous_value + variable) * self.time_step_size + noise
        # f(X) = 2.0*X + 0

        # - - - - - starting values - - - - -
        # variable = G.output_state.value + stimulus = 0.0 + 1.0 = 1.0
        # previous_value = initial_value = 1.0
        # single_run = S.execute([[1.0]])
        # np.testing.assert_allclose(single_run, np.array([[2.0]]))
        np.testing.assert_allclose(S.execute([[1.0]]), np.array([[2.0]]))
        # X = 1.0 + (-1.0 + 1.0)*0.02 + 0.0
        # X = 1.0 + 0.0 + 0.0 = 1.0 <--- previous value 1.0
        # f(X) = 2.0*1.0  <--- return 2.0, recurrent projection 2.0

        np.testing.assert_allclose(S.execute([[1.0]]), np.array([[2.08]]))
        # X = 1.0 + (-1.0 + 3.0)*0.02 + 0.0
        # X = 1.0 + 0.04 = 1.04 <--- previous value 1.04
        # f(X) = 2.0*1.04  <--- return 2.08

        np.testing.assert_allclose(S.execute([[1.0]]), np.array([[2.1616]]))
Ejemplo n.º 4
0
    def cyclic_extended_loop(self):
        a = TransferMechanism(name='a', default_variable=[0, 0])
        b = TransferMechanism(name='b')
        c = TransferMechanism(name='c')
        d = TransferMechanism(name='d')
        e = TransferMechanism(name='e', default_variable=[0])
        f = TransferMechanism(name='f')

        p1 = Process(pathway=[a, b, c, d], name='p1')
        p2 = Process(pathway=[e, c, f, b, d], name='p2')

        s = System(
            processes=[p1, p2],
            name='Cyclic System with Extended Loop',
            initial_values={a: [1, 1]},
        )

        inputs = {a: [2, 2], e: [0]}
        s.run(inputs=inputs)

        assert set([a, c]) == set(s.origin_mechanisms.mechanisms)
        assert [d] == s.terminal_mechanisms.mechanisms

        assert a.systems[s] == ORIGIN
        assert b.systems[s] == CYCLE
        assert c.systems[s] == INTERNAL
        assert d.systems[s] == TERMINAL
        assert e.systems[s] == ORIGIN
        assert f.systems[s] == INITIALIZE_CYCLE
Ejemplo n.º 5
0
    def test_one_run_twice(self):
        A = IntegratorMechanism(
            name='A',
            default_variable=[0],
            function=SimpleIntegrator(
                rate=.5,
            )
        )

        p = Process(
            default_variable=[0],
            pathway=[A],
            name='p'
        )

        s = System(
            processes=[p],
            name='s'
        )

        term_conds = {TimeScale.TRIAL: AfterNCalls(A, 2)}
        stim_list = {A: [[1]]}

        s.run(
            inputs=stim_list,
            termination_processing=term_conds
        )

        terminal_mech = A
        expected_output = [
            numpy.array([1.]),
        ]

        for i in range(len(expected_output)):
            numpy.testing.assert_allclose(expected_output[i], terminal_mech.output_values[i])
Ejemplo n.º 6
0
    def test_bypass(self):
        a = TransferMechanism(name='a', default_variable=[0, 0])
        b = TransferMechanism(name='b', default_variable=[0, 0])
        c = TransferMechanism(name='c')
        d = TransferMechanism(name='d')

        p1 = Process(pathway=[a, b, c, d], name='p1')
        p2 = Process(pathway=[a, b, d], name='p2')

        s = System(
            processes=[p1, p2],
            name='Bypass System',
            initial_values={a: [1, 1]},
        )

        inputs = {a: [[2, 2], [0, 0]]}
        s.run(inputs=inputs)

        assert [a] == s.origin_mechanisms.mechanisms
        assert [d] == s.terminal_mechanisms.mechanisms

        assert a.systems[s] == ORIGIN
        assert b.systems[s] == INTERNAL
        assert c.systems[s] == INTERNAL
        assert d.systems[s] == TERMINAL
Ejemplo n.º 7
0
    def test_convergent(self):
        a = TransferMechanism(name='a', default_variable=[0, 0])
        b = TransferMechanism(name='b')
        c = TransferMechanism(name='c')
        c = TransferMechanism(name='c', default_variable=[0])
        d = TransferMechanism(name='d')
        e = TransferMechanism(name='e')

        p1 = Process(pathway=[a, b, e], name='p1')
        p2 = Process(pathway=[c, d, e], name='p2')

        s = System(
            processes=[p1, p2],
            name='Convergent System',
            initial_values={a: [1, 1]},
        )

        inputs = {a: [[2, 2]], c: [[0]]}
        s.run(inputs=inputs)

        assert set([a, c]) == set(s.origin_mechanisms.mechanisms)
        assert [e] == s.terminal_mechanisms.mechanisms

        assert a.systems[s] == ORIGIN
        assert b.systems[s] == INTERNAL
        assert c.systems[s] == ORIGIN
        assert d.systems[s] == INTERNAL
        assert e.systems[s] == TERMINAL
Ejemplo n.º 8
0
    def test_recurrent_transfer_origin(self):
        R = RecurrentTransferMechanism(has_recurrent_input_state=True)
        P = Process(pathway=[R])
        S = System(processes=[P])

        S.run(inputs={R: [[1.0], [2.0], [3.0]]})
        print(S.results)
    def test_two_ABB(self):
        A = TransferMechanism(
            name='A',
            default_variable=[0],
            function=Linear(slope=2.0),
        )

        B = IntegratorMechanism(name='B',
                                default_variable=[0],
                                function=SimpleIntegrator(rate=.5))

        p = Process(default_variable=[0], pathway=[A, B], name='p')

        s = System(processes=[p], name='s')

        term_conds = {TimeScale.TRIAL: AfterNCalls(B, 2)}
        stim_list = {A: [[1]]}

        sched = Scheduler(system=s)
        sched.add_condition(A, Any(AtPass(0), AfterNCalls(B, 2)))
        sched.add_condition(B, Any(JustRan(A), JustRan(B)))
        s.scheduler_processing = sched

        s.run(inputs=stim_list, termination_processing=term_conds)

        terminal_mech = B
        expected_output = [
            numpy.array([2.]),
        ]

        for i in range(len(expected_output)):
            numpy.testing.assert_allclose(expected_output[i],
                                          terminal_mech.output_values[i])
Ejemplo n.º 10
0
    def test_four_integrators_mixed(self):
        A = IntegratorMechanism(name='A',
                                default_variable=[0],
                                function=SimpleIntegrator(rate=1))

        B = IntegratorMechanism(name='B',
                                default_variable=[0],
                                function=SimpleIntegrator(rate=1))

        C = IntegratorMechanism(name='C',
                                default_variable=[0],
                                function=SimpleIntegrator(rate=1))

        D = IntegratorMechanism(name='D',
                                default_variable=[0],
                                function=SimpleIntegrator(rate=1))

        p = Process(default_variable=[0], pathway=[A, C], name='p')

        p1 = Process(default_variable=[0], pathway=[A, D], name='p1')

        q = Process(default_variable=[0], pathway=[B, C], name='q')

        q1 = Process(default_variable=[0], pathway=[B, D], name='q1')

        s = System(processes=[p, p1, q, q1], name='s')

        term_conds = {
            TimeScale.TRIAL: All(AfterNCalls(C, 1), AfterNCalls(D, 1))
        }
        stim_list = {A: [[1]], B: [[1]]}

        sched = Scheduler(system=s)
        sched.add_condition(B, EveryNCalls(A, 2))
        sched.add_condition(C, EveryNCalls(A, 1))
        sched.add_condition(D, EveryNCalls(B, 1))
        s.scheduler_processing = sched

        s.run(inputs=stim_list, termination_processing=term_conds)

        mechs = [A, B, C, D]
        expected_output = [
            [
                numpy.array([2.]),
            ],
            [
                numpy.array([1.]),
            ],
            [
                numpy.array([4.]),
            ],
            [
                numpy.array([3.]),
            ],
        ]

        for m in range(len(mechs)):
            for i in range(len(expected_output[m])):
                numpy.testing.assert_allclose(expected_output[m][i],
                                              mechs[m].output_values[i])
Ejemplo n.º 11
0
    def test_2_target_mechanisms_fn_spec(self):
        A = TransferMechanism(name="learning-process-mech-A")
        B = TransferMechanism(name="learning-process-mech-B")
        C = TransferMechanism(name="learning-process-mech-C")

        LP = Process(name="learning-process", pathway=[A, B], learning=ENABLED)
        LP2 = Process(name="learning-process2",
                      pathway=[A, C],
                      learning=ENABLED)

        S = System(
            name="learning-system",
            processes=[LP, LP2],
        )

        def target_function():
            val_1 = NormalDist(mean=3.0).function()
            val_2 = NormalDist(mean=3.0).function()
            return [val_1, val_2]

        with pytest.raises(RunError) as error_text:

            S.run(inputs={A: [[[1.0]]]}, targets=target_function)

        assert 'Target values for' in str(error_text.value) and \
               'must be specified in a dictionary' in str(error_text.value)
Ejemplo n.º 12
0
    def test_not_all_output_state_values_have_label(self):
        input_labels_dict = {
            "red": [1.0, 0.0],
            "green": [0.0, 1.0],
            "blue": [2.0, 2.0]
        }
        output_labels_dict = {"red": [1.0, 0.0], "green": [0.0, 1.0]}
        M = ProcessingMechanism(size=2,
                                params={
                                    INPUT_LABELS_DICT: input_labels_dict,
                                    OUTPUT_LABELS_DICT: output_labels_dict
                                })
        P = Process(pathway=[M])
        S = System(processes=[P])

        store_output_labels = []

        def call_after_trial():
            store_output_labels.append(M.output_labels)

        S.run(inputs=['red', 'blue', 'green', 'blue'],
              call_after_trial=call_after_trial)
        assert np.allclose(
            S.results,
            [[[1.0, 0.0]], [[2.0, 2.0]], [[0.0, 1.0]], [[2.0, 2.0]]])

        assert store_output_labels[0] == ['red']
        assert np.allclose(store_output_labels[1], [[2.0, 2.0]])
        assert store_output_labels[2] == ['green']
        assert np.allclose(store_output_labels[3], [[2.0, 2.0]])
Ejemplo n.º 13
0
    def test_kwta_average_k_1_ratio_0_8(self):
        K = KWTA(
            name='K',
            size=4,
            k_value=1,
            threshold=0,
            ratio=0.8,
            function=Linear,
            average_based=True
        )
        p = Process(pathway=[K], prefs=TestKWTAAverageBased.simple_prefs)
        s = System(processes=[p], prefs=TestKWTAAverageBased.simple_prefs)
        kwta_input = {K: [[1, 2, 3, 4]]}
        s.run(inputs=kwta_input)
        assert np.allclose(K.value, [[-1.4, -0.3999999999999999, 0.6000000000000001, 1.6]])

# class TestClip:
#     def test_clip_float(self):
#         K = KWTA(clip=[-2.0, 2.0],
#                  integrator_mode=False)
#         assert np.allclose(K.execute(3.0), 2.0)
#         assert np.allclose(K.execute(-3.0), -2.0)
#
#     def test_clip_array(self):
#         K = KWTA(default_variable=[[0.0, 0.0, 0.0]],
#                  clip=[-2.0, 2.0],
#                  integrator_mode=False)
#         assert np.allclose(K.execute([3.0, 0.0, -3.0]), [2.0, 0.0, -2.0])
#
#     def test_clip_2d_array(self):
#         K = KWTA(default_variable=[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
#                  clip=[-2.0, 2.0],
#                  integrator_mode=False)
#         assert np.allclose(K.execute([[-5.0, -1.0, 5.0], [5.0, -5.0, 1.0], [1.0, 5.0, 5.0]]),
#                            [[-2.0, -1.0, 2.0], [2.0, -2.0, 1.0], [1.0, 2.0, 2.0]])
Ejemplo n.º 14
0
    def test_buffer_as_function_of_origin_mech_in_system(self):
        P = ProcessingMechanism(function=Buffer(
            default_variable=[[0.0]], initializer=[[0.0]], history=3))

        process = Process(pathway=[P])
        system = System(processes=[process])
        P.reinitialize_when = Never()
        full_result = []

        def assemble_full_result():
            full_result.append(P.value)

        result = system.run(inputs={P: [[1.0], [2.0], [3.0], [4.0], [5.0]]},
                            call_after_trial=assemble_full_result)
        # only returns index 0 item of the deque on each trial  (output state value)
        assert np.allclose(result,
                           [[[0.0]], [[0.0]], [[1.0]], [[2.0]], [[3.0]]])

        # stores full mechanism value (full deque) on each trial
        expected_full_result = [
            np.array([[0.], [1.]]),
            np.array([[0.], [1.], [2.]]),
            np.array([[[1.]], [[2.]], [[3.]]]),  # Shape change
            np.array([[[2.]], [[3.]], [[4.]]]),
            np.array([[[3.]], [[4.]], [[5.]]])
        ]
        for i in range(5):
            assert np.allclose(expected_full_result[i], full_result[i])
Ejemplo n.º 15
0
    def test_five_ABABCDE(self):
        A = TransferMechanism(
            name='A',
            default_variable=[0],
            function=Linear(slope=2.0),
        )

        B = TransferMechanism(
            name='B',
            default_variable=[0],
            function=Linear(slope=2.0),
        )

        C = IntegratorMechanism(name='C',
                                default_variable=[0],
                                function=SimpleIntegrator(rate=.5))

        D = TransferMechanism(
            name='D',
            default_variable=[0],
            function=Linear(slope=1.0),
        )

        E = TransferMechanism(
            name='E',
            default_variable=[0],
            function=Linear(slope=2.0),
        )

        p = Process(default_variable=[0], pathway=[A, C, D], name='p')

        q = Process(default_variable=[0], pathway=[B, C, E], name='q')

        s = System(processes=[p, q], name='s')

        term_conds = {TimeScale.TRIAL: AfterNCalls(E, 1)}
        stim_list = {A: [[1]], B: [[2]]}

        sched = Scheduler(system=s)
        sched.add_condition(C, Any(EveryNCalls(A, 1), EveryNCalls(B, 1)))
        sched.add_condition(D, EveryNCalls(C, 1))
        sched.add_condition(E, EveryNCalls(C, 1))
        s.scheduler_processing = sched

        s.run(inputs=stim_list, termination_processing=term_conds)

        terminal_mechs = [D, E]
        expected_output = [
            [
                numpy.array([3.]),
            ],
            [
                numpy.array([6.]),
            ],
        ]

        for m in range(len(terminal_mechs)):
            for i in range(len(expected_output[m])):
                numpy.testing.assert_allclose(
                    expected_output[m][i], terminal_mechs[m].output_values[i])
Ejemplo n.º 16
0
    def test_dict_of_subdicts(self):
        input_labels_dict_M1 = {"red": [1, 1], "green": [0, 0]}
        output_labels_dict_M2 = {0: {"red": [0, 0], "green": [1, 1]}}

        M1 = ProcessingMechanism(
            size=2, params={INPUT_LABELS_DICT: input_labels_dict_M1})
        M2 = ProcessingMechanism(
            size=2, params={OUTPUT_LABELS_DICT: output_labels_dict_M2})
        P = Process(pathway=[M1, M2], learning=ENABLED, learning_rate=0.25)
        S = System(processes=[P])

        learned_matrix = []
        count = []

        def record_matrix_after_trial():
            learned_matrix.append(M2.path_afferents[0].mod_matrix)
            count.append(1)

        S.run(inputs=['red', 'green', 'green', 'red'],
              targets=['red', 'green', 'green', 'red'],
              call_after_trial=record_matrix_after_trial)

        assert np.allclose(S.results,
                           [[[1, 1]], [[0., 0.]], [[0., 0.]], [[0.5, 0.5]]])
        assert np.allclose(learned_matrix, [
            np.array([[0.75, -0.25], [-0.25, 0.75]]),
            np.array([[0.75, -0.25], [-0.25, 0.75]]),
            np.array([[0.75, -0.25], [-0.25, 0.75]]),
            np.array([[0.625, -0.375], [-0.375, 0.625]])
        ])
Ejemplo n.º 17
0
    def test_default_lc_control_mechanism(self):
        G = 1.0
        k = 0.5
        starting_value_LC = 2.0
        user_specified_gain = 1.0

        A = TransferMechanism(function=Logistic(gain=user_specified_gain))

        B = TransferMechanism(function=Logistic(gain=user_specified_gain))
        # B.output_states[0].value *= 0.0  # Reset after init | Doesn't matter here b/c default var = zero, no intercept

        P = Process(pathway=[A, B])

        LC = LCControlMechanism(modulated_mechanisms=[A, B],
                                base_level_gain=G,
                                scaling_factor_gain=k,
                                objective_mechanism=ObjectiveMechanism(
                                    function=Linear,
                                    monitored_output_states=[B],
                                    name='LC ObjectiveMechanism'))
        for output_state in LC.output_states:
            output_state.value *= starting_value_LC

        S = System(processes=[P])

        gain_created_by_LC_output_state_1 = []
        gain_created_by_LC_output_state_2 = []
        mod_gain_assigned_to_A = []
        base_gain_assigned_to_A = []
        mod_gain_assigned_to_B = []
        base_gain_assigned_to_B = []

        def report_trial():
            gain_created_by_LC_output_state_1.append(LC.output_states[0].value)
            gain_created_by_LC_output_state_2.append(LC.output_states[1].value)
            mod_gain_assigned_to_A.append(A.mod_gain[0])
            mod_gain_assigned_to_B.append(B.mod_gain[0])
            base_gain_assigned_to_A.append(A.function_object.gain)
            base_gain_assigned_to_B.append(B.function_object.gain)

        S.run(inputs={A: [[1.0], [1.0], [1.0], [1.0], [1.0]]},
              call_after_trial=report_trial)

        # (1) First value of gain in mechanisms A and B must be whatever we hardcoded for LC starting value
        assert mod_gain_assigned_to_A[0] == starting_value_LC

        # (2) _gain should always be set to user-specified value
        for i in range(5):
            assert base_gain_assigned_to_A[i] == user_specified_gain
            assert base_gain_assigned_to_B[i] == user_specified_gain

        # (3) LC output on trial n becomes gain of A and B on trial n + 1
        assert np.allclose(mod_gain_assigned_to_A[1:],
                           gain_created_by_LC_output_state_1[0:-1])
        assert np.allclose(mod_gain_assigned_to_B[1:],
                           gain_created_by_LC_output_state_2[0:-1])

        # (4) mechanisms A and B should always have the same gain values (b/c they are identical)
        assert np.allclose(mod_gain_assigned_to_A, mod_gain_assigned_to_B)
 def test_udf_system_terminal(self):
     def myFunction(variable, params, context):
         return [variable[0][2], variable[0][0]]
     myMech = ProcessingMechanism(function=myFunction, size=3, name='myMech')
     T2 = TransferMechanism(size=3, function=Linear)
     p2 = Process(pathway=[T2, myMech])
     s2 = System(processes=[p2])
     s2.run(inputs = {T2: [[1, 2, 3]]})
     assert(np.allclose(s2.results[0][0], [3, 1]))
 def test_udf_system_origin(self):
     def myFunction(variable, params, context):
         return [variable[0][1], variable[0][0]]
     myMech = ProcessingMechanism(function=myFunction, size=3, name='myMech')
     T = TransferMechanism(size=2, function=Linear)
     p = Process(pathway=[myMech, T])
     s = System(processes=[p])
     s.run(inputs = {myMech: [[1, 3, 5]]})
     assert np.allclose(s.results[0][0], [3, 1])
Ejemplo n.º 20
0
    def test_process(self):
        a = TransferMechanism(name="a-sg", default_variable=[0, 0, 0])
        b = TransferMechanism(name="b-sg")
        p = Process(name="p", pathway=[a, b], learning=ENABLED)
        s = System(name="s", processes=[p])

        a_label = s._get_label(a, ALL)
        b_label = s._get_label(b, ALL)

        assert "out (3)" in a_label and "in (3)" in a_label
        assert "out (1)" in b_label and "in (1)" in b_label
Ejemplo n.º 21
0
    def test_heterogeneous_variables(self):
        # from psyneulink.components.mechanisms.processing.objectivemechanism import ObjectiveMechanism
        a = TransferMechanism(name='a', default_variable=[[0.0], [0.0, 0.0]])

        p1 = Process(pathway=[a])

        s = System(processes=[p1])

        inputs = {a: [[[1.1], [2.1, 2.1]], [[1.2], [2.2, 2.2]]]}

        s.run(inputs)
Ejemplo n.º 22
0
    def test_kwta_threshold_float(self):
        K = KWTA(
            name='K',
            size=4,
            threshold=0.5
        )
        p = Process(pathway=[K], prefs=TestKWTARatio.simple_prefs)
        s = System(processes=[p], prefs=TestKWTARatio.simple_prefs)

        s.run(inputs={K: [1, 2, 3, 3]})
        assert np.allclose(K.value, [[0.2689414213699951, 0.5, 0.7310585786300049, 0.7310585786300049]])
Ejemplo n.º 23
0
    def test_kwta_k_value_empty_size_4(self):
        K = KWTA(
            name='K',
            size=4
        )
        assert K.k_value == 0.5
        p = Process(pathway=[K], prefs=TestKWTARatio.simple_prefs)
        s = System(processes=[p], prefs=TestKWTARatio.simple_prefs)

        s.run(inputs={K: [1, 2, 3, 4]})
        assert np.allclose(K.value, [[0.18242552380635635, 0.3775406687981454, 0.6224593312018546, 0.8175744761936437]])
Ejemplo n.º 24
0
    def test_kwta_threshold_int(self):
        K = KWTA(
            name='K',
            size=4,
            threshold=-1
        )
        p = Process(pathway=[K], prefs=TestKWTAThreshold.simple_prefs)
        s = System(processes=[p], prefs=TestKWTAThreshold.simple_prefs)

        s.run(inputs={K: [1, 2, 3, 4]})
        assert np.allclose(K.value, [[0.07585818002124355, 0.18242552380635635, 0.3775406687981454, 0.6224593312018546]])
Ejemplo n.º 25
0
    def test_is_finished_stops_system(self):
        D = DDM(name='DDM', function=DriftDiffusionIntegrator(threshold=10.0))
        P = Process(pathway=[D])
        S = System(processes=[P])

        S.run(inputs={D: 2.0},
              termination_processing={TimeScale.TRIAL: WhenFinished(D)})
        # decision variable's value should match threshold
        assert D.value[0] == 10.0
        # it should have taken 5 executions (and time_step_size = 1.0)
        assert D.value[1] == 5.0
Ejemplo n.º 26
0
    def test_LCA_length_1(self):

        T = TransferMechanism(function=Linear(slope=1.0))
        L = LCA(
            function=Linear(slope=2.0),
            self_excitation=3.0,
            leak=0.5,
            competition=
            1.0,  #  competition does not matter because we only have one unit
            time_step_size=0.1)
        P = Process(pathway=[T, L])
        S = System(processes=[P])
        L.reinitialize_when = Never()
        #  - - - - - - - Equations to be executed  - - - - - - -

        # new_transfer_input =
        # previous_transfer_input
        # + (leak * previous_transfer_input_1 + self_excitation * result1 + competition * result2 + outside_input1) * dt
        # + noise

        # result = new_transfer_input*2.0

        # recurrent_matrix = [[3.0]]

        #  - - - - - - - - - - - - - -  - - - - - - - - - - - -

        results = []

        def record_execution():
            results.append(L.value[0][0])

        S.run(inputs={T: [1.0]},
              num_trials=3,
              call_after_trial=record_execution)

        # - - - - - - - TRIAL 1 - - - - - - -

        # new_transfer_input = 0.0 + ( 0.5 * 0.0 + 3.0 * 0.0 + 0.0 + 1.0)*0.1 + 0.0    =    0.1
        # f(new_transfer_input) = 0.1 * 2.0 = 0.2

        # - - - - - - - TRIAL 2 - - - - - - -

        # new_transfer_input = 0.1 + ( 0.5 * 0.1 + 3.0 * 0.2 + 0.0 + 1.0)*0.1 + 0.0    =    0.265
        # f(new_transfer_input) = 0.265 * 2.0 = 0.53

        # - - - - - - - TRIAL 3 - - - - - - -

        # new_transfer_input = 0.265 + ( 0.5 * 0.265 + 3.0 * 0.53 + 0.0 + 1.0)*0.1 + 0.0    =    0.53725
        # f(new_transfer_input) = 0.53725 * 2.0 = 1.0745

        assert np.allclose(results, [0.2, 0.53, 1.0745])
Ejemplo n.º 27
0
 def test_kwta_average_k_1(self):
     K = KWTA(
         name='K',
         size=4,
         k_value=1,
         threshold=0,
         function=Linear,
         average_based=True
     )
     p = Process(pathway=[K], prefs=TestKWTAAverageBased.simple_prefs)
     s = System(processes=[p], prefs=TestKWTAAverageBased.simple_prefs)
     kwta_input = {K: [[1, 2, 3, 4]]}
     s.run(inputs=kwta_input)
     assert np.allclose(K.value, [[-2, -1, 0, 1]])
Ejemplo n.º 28
0
    def test_dict_of_arrays(self):
        input_labels_dict = {
            "red": [1, 0, 0],
            "green": [0, 1, 0],
            "blue": [0, 0, 1]
        }
        M = ProcessingMechanism(default_variable=[[0, 0, 0]],
                                params={INPUT_LABELS_DICT: input_labels_dict})
        P = Process(pathway=[M])
        S = System(processes=[P])

        store_input_labels = []

        def call_after_trial():
            store_input_labels.append(M.input_labels)

        S.run(inputs=['red', 'green', 'blue', 'red'],
              call_after_trial=call_after_trial)
        assert np.allclose(
            S.results, [[[1, 0, 0]], [[0, 1, 0]], [[0, 0, 1]], [[1, 0, 0]]])
        assert store_input_labels == [['red'], ['green'], ['blue'], ['red']]

        S.run(inputs='red')
        assert np.allclose(
            S.results,
            [[[1, 0, 0]], [[0, 1, 0]], [[0, 0, 1]], [[1, 0, 0]], [[1, 0, 0]]])

        S.run(inputs=['red'])
        assert np.allclose(S.results, [[[1, 0, 0]], [[0, 1, 0]], [[0, 0, 1]],
                                       [[1, 0, 0]], [[1, 0, 0]], [[1, 0, 0]]])
Ejemplo n.º 29
0
    def test_dict_list_and_function(self):
        A = TransferMechanism(name="diverging-learning-pathways-mech-A")
        B = TransferMechanism(name="diverging-learning-pathways-mech-B")
        C = TransferMechanism(name="diverging-learning-pathways-mech-C")
        D = TransferMechanism(name="diverging-learning-pathways-mech-D")
        E = TransferMechanism(name="diverging-learning-pathways-mech-E")

        P1 = Process(name="learning-pathway-1",
                     pathway=[A, B, C],
                     learning=ENABLED)
        P2 = Process(name="learning-pathway-2",
                     pathway=[A, D, E],
                     learning=ENABLED)

        S = System(name="learning-system", processes=[P1, P2])

        def target_function():
            val_1 = NormalDist(mean=3.0).function()
            return val_1

        S.run(inputs={A: 1.0}, targets={C: 2.0, E: target_function})

        S.run(inputs={A: 1.0}, targets={C: [2.0], E: target_function})

        S.run(inputs={A: 1.0}, targets={C: [[2.0]], E: target_function})
Ejemplo n.º 30
0
def run_twice_in_system(mech, input1, input2=None):
    if input2 is None:
        input2 = input1
    simple_prefs = {REPORT_OUTPUT_PREF: False, VERBOSE_PREF: False}
    simple_process = Process(size=mech.size[0],
                             pathway=[mech],
                             name='simple_process')
    simple_system = System(processes=[simple_process],
                           name='simple_system',
                           prefs=simple_prefs)

    first_output = simple_system.run(inputs={mech: [input1]})
    second_output = simple_system.run(inputs={mech: [input2]})
    return second_output[1][0]