Ejemplo n.º 1
0
    def ExportResults(self):

        if self.lineEdit_FileName.text() != "":
            if self.save_path != "":
                self.export_path_folder = self.save_path + "/"
            else:
                error(
                    "Plese, choose a folder before trying export the results!")
                return
        else:
            error("Inform a file name before trying export the results!")
            return

        self.check(export=True)
        freq = self.frequencies
        self.export_path = self.export_path_folder + self.lineEdit_FileName.text(
        ) + ".dat"
        if self.save_Absolute:
            response = get_structural_frf(self.mesh, self.solution,
                                          self.nodeID, self.localDof)
            header = (
                "Frequency[Hz], Real part [{}], Imaginary part [{}], Absolute [{}]"
            ).format(self.unit_label, self.unit_label, self.unit_label)
            data_to_export = np.array(
                [freq,
                 np.real(response),
                 np.imag(response),
                 np.abs(response)]).T
        elif self.save_Real_Imaginary:
            response = get_structural_frf(self.mesh, self.solution,
                                          self.nodeID, self.localDof)
            header = (
                "Frequency[Hz], Real part [{}], Imaginary part [{}]").format(
                    self.unit_label, self.unit_label)
            data_to_export = np.array(
                [freq, np.real(response),
                 np.imag(response)]).T

        np.savetxt(self.export_path,
                   data_to_export,
                   delimiter=",",
                   header=header)
        self.messages("The results has been exported.")
Ejemplo n.º 2
0
 def get_response(self):
     response = get_structural_frf(self.preprocessor, self.solution,
                                   self.node_ID, self.localDof)
     if self.SingleDiff:
         output_data = response * (1j * 2 * np.pi) * self.frequencies
     elif self.DoubleDiff:
         output_data = response * ((1j * 2 * np.pi * self.frequencies)**2)
     else:
         output_data = response
     return output_data
Ejemplo n.º 3
0
    def plot(self):

        frequencies = self.frequencies
        dof_response = get_structural_frf(self.mesh, self.solution,
                                          self.nodeID, self.localDof)
        fig = plt.figure(figsize=[10, 6])
        ax = fig.add_subplot(1, 1, 1)

        #cursor = Cursor(ax)
        cursor = SnaptoCursor(ax, frequencies, dof_response, show_cursor=True)
        plt.connect('motion_notify_event', cursor.mouse_move)

        legend_label = "Response {} at node {}".format(self.localdof_label,
                                                       self.nodeID)

        if dof_response.all() == 0:
            first_plot, = plt.plot(frequencies,
                                   dof_response,
                                   color=[1, 0, 0],
                                   linewidth=2,
                                   label=legend_label)
        else:
            first_plot, = plt.semilogy(frequencies,
                                       dof_response,
                                       color=[1, 0, 0],
                                       linewidth=2,
                                       label=legend_label)

        first_legend = plt.legend(handles=[first_plot], loc='upper right')
        plt.gca().add_artist(first_legend)

        ax.set_title(('Frequency Response Function: {} Method').format(
            self.analysisMethod),
                     fontsize=18,
                     fontweight='bold')
        ax.set_xlabel(('Frequency [Hz]'), fontsize=16, fontweight='bold')
        ax.set_ylabel(("FRF's magnitude [{}]").format(self.unit_label),
                      fontsize=16,
                      fontweight='bold')

        # plt.axis([np.min(frequencies), np.max(frequencies), np.min(dof_response), np.max(dof_response)])
        plt.show()
Ejemplo n.º 4
0
    def plot(self):

        fig = plt.figure(figsize=[12, 7])
        ax = fig.add_subplot(1, 1, 1)

        # file_open = open("C:/AIV\PROJECT/OpenPulse/examples/validation_structural/data/ey_5mm_ez_0mm/FRF_Fx_1N_n361_Ux_n436.csv", "r")
        # file_open = open("C:/AIV\PROJECT/OpenPulse/examples/validation_structural/data/ey_5mm_ez_0mm/FRF_Fx_1N_n361_Uy_n187.csv", "r")
        # file_open = open("C:/AIV\PROJECT/OpenPulse/examples/validation_structural/data/ey_5mm_ez_0mm/FRF_Fx_1N_n361_Uz_n711.csv", "r")
        # data = np.loadtxt(file_open, delimiter="," , skiprows=2)

        frequencies = self.frequencies
        response = get_structural_frf(self.mesh,
                                      self.solution,
                                      self.nodeID,
                                      self.localDof,
                                      absolute=self.plotAbs,
                                      real=self.plotReal,
                                      imaginary=self.plotImag)

        if self.plotAbs:
            ax.set_ylabel(("Structural Response - Absolute [{}]").format(
                self.unit_label),
                          fontsize=14,
                          fontweight='bold')
        elif self.plotReal:
            ax.set_ylabel(
                ("Structural Response - Real [{}]").format(self.unit_label),
                fontsize=14,
                fontweight='bold')
        elif self.plotImag:
            ax.set_ylabel(("Structural Response - Imaginary [{}]").format(
                self.unit_label),
                          fontsize=14,
                          fontweight='bold')

        #cursor = Cursor(ax)
        cursor = SnaptoCursor(ax, frequencies, response, show_cursor=True)
        plt.connect('motion_notify_event', cursor.mouse_move)

        legend_label = "Response {} at node {}".format(self.localdof_label,
                                                       self.nodeID)
        if self.imported_data is None:

            if any(value <= 0 for value in response):
                first_plot, = plt.plot(frequencies,
                                       response,
                                       color=[1, 0, 0],
                                       linewidth=2,
                                       label=legend_label)
            else:
                first_plot, = plt.semilogy(frequencies,
                                           response,
                                           color=[1, 0, 0],
                                           linewidth=2,
                                           label=legend_label)
                # second_plot, = plt.semilogy(data[:,0], np.abs(data[:,1]+1j*data[:,2]), color=[0,0,1], linewidth=1)
            _legends = plt.legend(handles=[first_plot],
                                  labels=[legend_label],
                                  loc='upper right')

        else:

            data = self.imported_data
            imported_Xvalues = data[:, 0]

            if self.plotAbs:
                imported_Yvalues = np.abs(data[:, 1] + 1j * data[:, 2])
            elif self.plotReal:
                imported_Yvalues = data[:, 1]
            elif self.plotImag:
                imported_Yvalues = data[:, 2]

            if any(value <= 0 for value in response) or any(
                    value <= 0 for value in imported_Yvalues):
                first_plot, = plt.plot(frequencies,
                                       response,
                                       color=[1, 0, 0],
                                       linewidth=2)
                second_plot, = plt.plot(imported_Xvalues,
                                        imported_Yvalues,
                                        color=[0, 0, 1],
                                        linewidth=1,
                                        linestyle="--")
            else:
                first_plot, = plt.semilogy(frequencies,
                                           response,
                                           color=[1, 0, 0],
                                           linewidth=2,
                                           label=legend_label)
                second_plot, = plt.semilogy(imported_Xvalues,
                                            imported_Yvalues,
                                            color=[0, 0, 1],
                                            linewidth=1,
                                            linestyle="--")
            _legends = plt.legend(handles=[first_plot, second_plot],
                                  labels=[legend_label, self.legend_imported],
                                  loc='upper right')

        plt.gca().add_artist(_legends)

        ax.set_title(
            ('Frequency Response: {} Method').format(self.analysisMethod),
            fontsize=18,
            fontweight='bold')
        ax.set_xlabel(('Frequency [Hz]'), fontsize=14, fontweight='bold')

        plt.show()
Ejemplo n.º 5
0
plot_results(mesh,
             coord_def,
             scf=0.5,
             out_OpenPulse=True,
             Show_nodes=True,
             Undeformed=False,
             Deformed=False,
             Animate_Mode=True,
             Save=False)

#%%
# GETTING FRF
response_node = 361
local_DOF = 0
response_DM = get_structural_frf(mesh, direct, response_node, local_DOF)
response_MS = get_structural_frf(mesh, modal, response_node, local_DOF)

DOF_label = dict(zip(np.arange(6), ["Ux", "Uy", "Uz", "Rx", "Ry", "Rz"]))
Unit_label = dict(
    zip(np.arange(6), ["[m]", "[m]", "[m]", "[rad]", "[rad]", "[rad]"]))

# PLOTTING RESULTS
fig = plt.figure(figsize=[10, 6])
ax = fig.add_subplot(1, 1, 1)

first_legend_label = "Direct"
second_legend_label = "Mode superposition"

if response_DM.all() == 0 or response_MS.all() == 0:
    first_plot, = plt.plot(frequencies,
Ejemplo n.º 6
0
    if run==1:
        # nodal respose (node, dof_corrected)
        node_response = 436 # Desired node to get response.
        local_dof_response  = 0 # Get the response at the following degree of freedom
    if run==2:
        # nodal respose (node, dof_corrected)
        node_response = 187 # Desired node to get response.
        local_dof_response  = 1 # Get the response at the following degree of freedom
    if run==3:
        # nodal respose (node, dof_corrected)
        node_response = 711 # Desired node to get response.
        local_dof_response  = 2 # Get the response at the following degree of freedom


Xd = get_structural_frf(mesh, direct, node_response, local_dof_response)
Xs = get_structural_frf(mesh, modal, node_response, local_dof_response)

test_label = "ey_{}mm_ez_{}mm".format(int(offset[0]*1000),int(offset[1]*1000))

if run==1:
    file1 = open("examples/validation_structural/data/" + test_label + "/FRF_Fx_1N_n361_Ux_n436.csv", "r")
    FRF = np.loadtxt(file1, delimiter=",", skiprows=2)
    file1.close()
elif run==2:
    file2 = open("examples/validation_structural/data/" + test_label + "/FRF_Fx_1N_n361_Uy_n187.csv", "r")
    FRF = np.loadtxt(file2, delimiter=",", skiprows=2)
    file2.close()
elif run==3:
    file3 = open("examples/validation_structural/data/" + test_label + "/FRF_Fx_1N_n361_Uz_n711.csv", "r")
    FRF = np.loadtxt(file3, delimiter=",", skiprows=2)
Ejemplo n.º 7
0
    if run == 1:
        # nodal response (node, dof_corrected)
        node_response = 436  # Desired node to get response.
        local_dof_response = 0  # Get the response at the following degree of freedom
    if run == 2:
        # nodal response (node, dof_corrected)
        node_response = 187  # Desired node to get response.
        local_dof_response = 1  # Get the response at the following degree of freedom
    if run == 3:
        # nodal response (node, dof_corrected)
        node_response = 711  # Desired node to get response.
        local_dof_response = 2  # Get the response at the following degree of freedom

Xd = get_structural_frf(preprocessor,
                        direct,
                        node_response,
                        local_dof_response,
                        absolute=True)
Xs = get_structural_frf(preprocessor,
                        modal,
                        node_response,
                        local_dof_response,
                        absolute=True)

# test_label = "ey_{}mm_ez_{}mm".format(int(offset[0]*1000),int(offset[1]*1000))

# if run==1:
#     # file1 = open("examples/validation_structural/data/" + test_label + "/FRF_Fx_1N_n361_Ux_n436.csv", "r")
#     file1 = "C:/Users/"
#     FRF = np.loadtxt(file1, delimiter=",", skiprows=2)
#     # file1.close()