Ejemplo n.º 1
0
def test_Simulation_set_optic_fiber_layer():
    sim = p2p.Simulation(p2p.implants.ArgusI(), engine='serial')

    # Invalid grid ranges
    with pytest.raises(ValueError):
        sim.set_optic_fiber_layer(x_range=[10, 0])
    with pytest.raises(ValueError):
        sim.set_optic_fiber_layer(x_range=[1, 2, 3])
    with pytest.raises(ValueError):
        sim.set_optic_fiber_layer(x_range='invalid')
    with pytest.raises(ValueError):
        sim.set_optic_fiber_layer(y_range=[10, 0])
    with pytest.raises(ValueError):
        sim.set_optic_fiber_layer(y_range=[1, 2, 3])
    with pytest.raises(ValueError):
        sim.set_optic_fiber_layer(y_range='invalid')

    x_range = [-100, 100]
    y_range = [0, 200]
    sim.set_optic_fiber_layer(x_range=x_range,
                              y_range=y_range,
                              save_data=False)
    npt.assert_equal(sim.ofl.gridx.min(), x_range[0])
    npt.assert_equal(sim.ofl.gridx.max(), x_range[1])
    npt.assert_equal(sim.ofl.gridy.min(), y_range[0])
    npt.assert_equal(sim.ofl.gridy.max(), y_range[1])
    npt.assert_equal(sim.ofl.range_x, np.diff(x_range))
    npt.assert_equal(sim.ofl.range_x, np.diff(x_range))

    # Smoke test
    implant = p2p.implants.ElectrodeArray('epiretinal', 10, 0, 0, 0)
    sim = p2p.Simulation(implant, engine='serial')
    sim.set_optic_fiber_layer(x_range=0, y_range=0)
    sim.set_optic_fiber_layer(x_range=[0, 0], y_range=[0, 0])
    sim.set_optic_fiber_layer()
Ejemplo n.º 2
0
def test_brightness_movie():
    logging.getLogger(__name__).info("test_brightness_movie()")

    tsample = 0.075 / 1000
    tsample_out = 1.0 / 30.0
    s1 = p2p.stimuli.PulseTrain(freq=20,
                                dur=0.5,
                                pulse_dur=.075 / 1000.,
                                interphase_dur=.075 / 1000.,
                                delay=0.,
                                tsample=tsample,
                                amp=20,
                                pulsetype='cathodicfirst')

    implant = p2p.implants.ElectrodeArray('epiretinal', [1, 1], [0, 1], [0, 1],
                                          [0, 1])

    # Smoke testing, feed the same stimulus through both electrodes:
    sim = p2p.Simulation(implant, engine='serial')

    sim.set_optic_fiber_layer(x_range=[-2, 2],
                              y_range=[-3, 3],
                              sampling=1,
                              save_data=False)

    sim.set_ganglion_cell_layer('latest', tsample=tsample)

    logging.getLogger(__name__).info(" - PulseTrain")
    sim.pulse2percept([s1, s1], t_percept=tsample_out)
Ejemplo n.º 3
0
def test_Simulation_pulse2percept():
    implant = p2p.implants.ElectrodeArray("epiretinal", 10, 0, 0, 0)
    sim = p2p.Simulation(implant, engine='serial')
    sim.set_optic_fiber_layer(x_range=[0, 0], y_range=[0, 0])
    pt = p2p.stimuli.BiphasicPulse('cathodicfirst', 0.45 / 1000, 0.005 / 1000)
    sim.pulse2percept(pt)
    sim.pulse2percept(pt, layers=['GCL'])
    sim.pulse2percept(pt, layers=['INL'])

    # PulseTrain must have the same tsample as (implicitly set up) GCL
    pt = p2p.stimuli.BiphasicPulse("cathodicfirst", 0.1, 0.001)
    with pytest.raises(ValueError):
        sim.pulse2percept(pt)

    pt = p2p.stimuli.BiphasicPulse("cathodicfirst", 0.1, 0.005 / 1000)
    with pytest.raises(ValueError):
        sim.pulse2percept(pt, layers=['GCL', 'invalid'])
Ejemplo n.º 4
0
def test_Simulation_set_ganglion_cell_layer():
    # A valid ganglion cell model
    class Valid(p2p.retina.BaseModel):
        def model_cascade(self, inval):
            return inval

    # Smoke test custom model
    implant = p2p.implants.ElectrodeArray('epiretinal', 10, 0, 0, 0)
    sim = p2p.Simulation(implant, engine='serial')
    sim.set_optic_fiber_layer(x_range=0, y_range=0)

    valid_model = Valid(tsample=0.2)
    sim.set_ganglion_cell_layer(valid_model)
    npt.assert_equal(isinstance(sim.gcl, p2p.retina.BaseModel), True)
    npt.assert_equal(sim.gcl.tsample, 0.2)

    # Smoke test latest model
    for modelstr in ['latest', 'Latest', 'LATEST']:
        sim.set_ganglion_cell_layer(modelstr, lweight=42)
        npt.assert_equal(isinstance(sim.gcl, p2p.retina.TemporalModel), True)
        npt.assert_equal(sim.gcl.lweight, 42)
        sim.set_ganglion_cell_layer(modelstr, unknown_param=2)  # smoke

    # Smoke test Nanduri model
    for modelstr in ['Nanduri2012', 'nanduri2012', 'NANDURI2012']:
        sim.set_ganglion_cell_layer(modelstr, tau3=42)
        npt.assert_equal(isinstance(sim.gcl, p2p.retina.Nanduri2012), True)
        npt.assert_equal(sim.gcl.tau3, 42)
        sim.set_ganglion_cell_layer(modelstr, unknown_param=2)  # smoke

    # Smoke test Horsager model
    for modelstr in ['Horsager2009', 'horsager', 'HORSAGER2009']:
        sim.set_ganglion_cell_layer(modelstr, tau3=42)
        npt.assert_equal(isinstance(sim.gcl, p2p.retina.Horsager2009), True)
        npt.assert_equal(sim.gcl.tau3, 42)
        sim.set_ganglion_cell_layer(modelstr, unknown_param=2)  # smoke

    # Model unknown
    with pytest.raises(ValueError):
        sim.set_ganglion_cell_layer('unknown-model')
    with pytest.raises(ValueError):
        sim.set_ganglion_cell_layer(p2p.implants.ArgusII())
Ejemplo n.º 5
0
def img2percept(
        infile,
        implant_type='AlphaIMS',
        engine_string='serial',
        s_sample=25,
        t_sample=0.005 / 1000,
        dconst=0.01,
        retinamodel='Nanduri2012',
        naxons=501,
        downsampling_input=None,  # tuple of desired resolution, e.g. (104,104)
        invert_input=False,
        videobool=False,
        tolerance=0.0):
    """
    Run pulse2percept on an input image.

    Parameters
    ----------
    infile : str
        path to input image file
    implant_type : str
        type of implant used for the simulation. Can be from ['AlphaIMS', 'ArgusI', 'ArgusII']
    engine_string : str, default='serial'
        parallelization engine used by p2p
    s_sample
    t_sample
    dconst
    retinamodel
    naxons
    downsampling_input
    invert_input
    videobool
    tolerance

    Returns
    -------

    """
    # TODO: Finish docstring

    # choose implant type
    implant = _import_implant(implant_type)
    # configure simulation
    sim = p2p.Simulation(implant,
                         engine=engine_string,
                         n_jobs=-1,
                         use_jit=False)
    sim.set_optic_fiber_layer(sampling=s_sample,
                              sensitivity_rule='decay',
                              decay_const=dconst,
                              n_axons=naxons)
    sim.set_ganglion_cell_layer(retinamodel, tsample=t_sample)

    # load input image
    if not videobool:
        img_in = sio.imread(infile, as_gray=True)
        if downsampling_input:
            img_in = sit.resize(img_in, (104, 104))
        if invert_input:
            img_in = invert(img_in)

    # generate pulsetrain
    if videobool:
        stim = p2p.stimuli.video2pulsetrain(infile, implant, tsample=t_sample)
    else:
        stim = p2p.stimuli.image2pulsetrain(img_in, implant, tsample=t_sample)

    # choose retina layers to be included in simulation
    simlayers = _choose_layers(retinamodel)
    # generate percept from pulsetrain
    percept = sim.pulse2percept(stim,
                                layers=simlayers,
                                t_percept=t_sample,
                                tol=tolerance)
    return percept
Ejemplo n.º 6
0
import numpy as np
import pickle
import pulse2percept as p2p

videofile = '../data/kid-pool.avi'
stimfile = '../examples/notebooks/stim-kid-pool-amplitude.dat'
perceptfile = 'percept-kid-pool-amplitude'

# Place an Argus I array on the retina
argus = p2p.implants.ArgusII(x_center=0, y_center=0, h=100)

sim = p2p.Simulation(argus, engine='joblib', num_jobs=5)

# Set parameters of the optic fiber layer (OFL)
# In previous versions of the model, this used to be called the `Retina`
# object, which created a spatial grid and generated the axtron streak map.
sampling = 250  # spatial sampling of the retina (microns)
axon_lambda = 2  # constant that determines fall-off with axonal distance
sim.set_optic_fiber_layer(sampling=sampling,
                          axon_lambda=axon_lambda,
                          x_range=[-2800, 2800],
                          y_range=[-1700, 1700])

# Set parameters of the ganglion cell layer (GCL)
# In previous versions of the model, this used to be called `TemporalModel`.
t_gcl = 0.005 / 1000  # Sampling step (s) for the GCL computation
t_percept = 1.0 / 30.0  # Sampling step (s) for the perceptual output
sim.set_ganglion_cell_layer(tsample=t_gcl)

try:
    stim = pickle.load(open(stimfile, "rb"))
Ejemplo n.º 7
0
def test_Simulation___init__():
    implant = p2p.implants.Electrode("epiretinal", 10, 0, 0, 0)
    with pytest.raises(TypeError):
        p2p.Simulation(implant)
import numpy as np
import pickle
import pulse2percept as p2p

# Place an Argus I array on the retina
argus = p2p.implants.ArgusII(x_center=0, y_center=0, h=100)

sim = p2p.Simulation(argus)

# Set parameters of the optic fiber layer (OFL)
# In previous versions of the model, this used to be called the `Retina`
# object, which created a spatial grid and generated the axtron streak map.
sampling = 250  # spatial sampling of the retina (microns)
axon_lambda = 2  # constant that determines fall-off with axonal distance
sim.set_optic_fiber_layer(sampling=sampling,
                          axon_lambda=axon_lambda,
                          x_range=[-2800, 2800],
                          y_range=[-1700, 1700])

# Set parameters of the ganglion cell layer (GCL)
# In previous versions of the model, this used to be called `TemporalModel`.
t_gcl = 0.005 / 1000  # Sampling step (s) for the GCL computation
t_percept = 1.0 / 30.0  # Sampling step (s) for the perceptual output
sim.set_ganglion_cell_layer(tsample=t_gcl)

stim = p2p.stimuli.video2pulsetrain('../../data/boston-train.mp4',
                                    argus,
                                    framerate=30,
                                    coding='amplitude',
                                    valrange=[0, 60],
                                    max_contrast=False,