Ejemplo n.º 1
0
    def reset_time(self, extend_only=False):
        '''
        Args:
            extend_only (bool) : will just extend the time in the segment and not reset it if set to true [do not use when composing wavoforms...].

        Allings all segments togeter and sets the input time to 0,
        e.g. ,
        chan1 : waveform until 70 ns
        chan2 : waveform until 140ns
        -> totaltime will be 140 ns,
        when you now as a new pulse (e.g. at time 0, it will actually occur at 140 ns in both blocks)
        '''

        n_channels = len(self.channels)
        shape = list(self.shape)
        time_data = np.empty([n_channels] + shape)

        for i in range(len(self.channels)):
            time_data[i] = upconvert_dimension(
                getattr(self, self.channels[i]).total_time, shape)

        times = np.amax(time_data, axis=0)
        times, axis = reduce_arr(times)
        if len(axis) == 0:
            loop_obj = times
        else:
            loop_obj = lp.loop_obj(no_setpoints=True)
            loop_obj.add_data(times, axis)

        for i in self.channels:
            segment = getattr(self, i)
            segment.reset_time(loop_obj, False)
    def reset_time(self, extend_only=False):
        '''
        Args:
            extend_only (bool) : will just extend the time in the segment and not reset it if set to true [do not use when composing wavoforms...].

        Allings all segments togeter and sets the input time to 0,
        e.g. ,
        chan1 : waveform until 70 ns
        chan2 : waveform until 140ns
        -> totaltime will be 140 ns,
        when you now as a new pulse (e.g. at time 0, it will actually occur at 140 ns in both blocks)
        '''
        n_branches = len(self.branches)
        n_channels = len(self.branches[0].channels)
        shape = list(self.shape)
        time_data = np.empty([n_branches * n_channels] + shape)

        for ibranch, branch in enumerate(self.branches):
            for ich, ch in enumerate(branch.channels):
                time_data[ibranch * n_channels + ich] = upconvert_dimension(
                    branch[ch].total_time, shape)

        times = np.amax(time_data, axis=0)
        times, axis = reduce_arr(times)
        logging.info(f'times {times}')
        if len(axis) == 0:
            loop_obj = times
        else:
            loop_obj = lp.loop_obj(no_setpoints=True)
            loop_obj.add_data(times, axis)

        for branch in self.branches:
            for ch in branch.channels:
                branch[ch].reset_time(loop_obj, False)
    def total_time(self):
        shape = list(self.shape)

        n_branches = len(self.branches)
        time_data = np.empty([n_branches] + shape)

        for i, branch in enumerate(self.branches):
            time_data[i] = upconvert_dimension(branch.total_time, shape)

        times = np.amax(time_data, axis=0)

        return times
Ejemplo n.º 4
0
    def _start_time(self):
        '''
        get the total time that will be uploaded for this segment to the AWG
        Returns:
            times (np.ndarray) : numpy array with the total time (maximum of all the channels), for all the different loops executed.
        '''

        shape = list(self.shape)
        n_channels = len(self.channels)

        time_data = np.empty([n_channels] + shape)

        for i in range(len(self.channels)):
            time_data[i] = upconvert_dimension(
                getattr(self, self.channels[i]).start_time, shape)

        times = np.amax(time_data, axis=0)

        return times
Ejemplo n.º 5
0
    def total_time(self):
        '''
        get the total time that will be uploaded for this segment to the AWG
        Returns:
            times (np.ndarray) : numpy array with the total time (maximum of all the channels), for all the different loops executed.
        '''
        if self.render_mode and self._total_times is not None:
            return self._total_times

        shape = list(self.shape)
        n_channels = len(self.channels)

        time_data = np.empty([n_channels] + shape)

        for i, channel in enumerate(self.channels):
            time_data[i] = upconvert_dimension(self[channel].total_time, shape)

        times = np.amax(time_data, axis=0)

        if self.render_mode:
            self._total_times = times

        return times