def __init__(self, param1, param2, param3): self.radar_data = unpack(param1) self.platform_position_data = param2 self.given_object = param3 self.meters = 0 self.size = 0 self.eyeballing_start_time = 0 self.eyeballing_end_time = 0 self.time_offset = 0 self.range_offset = 0
''' #Import required modules from pulson440_unpack import unpack from read_files import read_radar_data, read_motion_data from rcs import rcs from data_align import align_data from GeneralAlignedRangeTimeGraph import AlignedGraph from FastLinInt import FastBackProjection from LinInt import BackProjection from Deconvolution import deconvolute from plotRTI import plotRTI from helper_functions import linear_interp_nan import pickle #Converts motion and RADAR data to the right data structures unpack("../Raw_Data/uavsar1flight7") #Loads data from the RADAR motion_data = read_motion_data("../Raw_Data/UAVSAR1Flight7.csv", "UAVSAR1") motion_data = linear_interp_nan(motion_data[1], motion_data[0]) radar_data = read_radar_data("data.pkl", 580, 0.3) #580, 0.30 is probably good #Performs RCS correction radar_data = rcs(radar_data) #Plot RTI for radar_data plotRTI(radar_data) #Set parameters #Take motion_start and motion_end from .tak file video #Estimate radar_start from the plotRTI above, initially comment out code below
from pulson440_unpack import unpack from backprojection import interp_approach import matplotlib.pyplot as plt import numpy as np import pandas import math radar_data = unpack('UASSAR3_Final_1') platform_position_data = 'uassar3_final_2.csv' given_object = 'Right_Ref_Refl-FinalEvent.csv' meters = 3 eyeballing_start_time = 160 eyeballing_end_time = 750 time_offset = 12 range_offset = 0.2 def extract_platform_position(): array = list() new_array = list() position_array = list() final_result = list() data = pandas.read_csv(platform_position_data, skiprows=2, low_memory=False) for elements in data: if "Rigid Body" in elements and "Marker" not in elements: array.append(elements) for contents in array: for col in data[contents]: if type(col) == str and "Position" in col:
@author: Mason + David ''' #Import required modules from pulson440_unpack import unpack from read_files import read_radar_data, read_motion_data from radar_movement import find_point_one_radar, find_i_of_first_motion, find_i_of_last_motion from data_align import align_data from GeneralAlignedRangeTimeGraph import AlignedGraph from FastLinInt import BackProjection from read_intensity import read_intensity from Deconvolution import deconvolute from backprojection import interp_approach, main #Ramu's backprojection #Converts motion and RADAR data to the right data structures unpack("../Raw_Data/uavsar1flight1") #Currently commented out because unused #Loads data from the RADAR motion_data = read_motion_data("../Raw_Data/UAVSAR1Flight1.csv","UAVSAR1") radar_data = read_radar_data("../Raw_Data/data.pkl") #Finds the first point of the motion data that it starts to move #motion_start = find_i_of_first_motion(motion_data) #Finds the last point of the motion data that it moves #motion_end = find_i_of_last_motion(motion_data) #Finds the first point in the radar data that it starts to move #radar_start = find_point_one_radar(radar_data) radar_start = 600
data = pandas.read_csv(platform_position_data, skiprows=6) for elements in data: if "Time" in elements: array.append(elements) for contents2 in array: time_array.append(data[contents2][0:].values) time_array = np.array(time_array).astype(np.float) return time_array def get_range(radar_xpos, radar_ypos, radar_zpos, img_x, img_y, img_z): return math.sqrt((radar_xpos - img_x)**2 + (radar_ypos - img_y)**2 + (radar_zpos - img_z)**2) radar_data = unpack('UASSAR3_Saturday_pseudoflight_1') platform_position_data = 'uassar3_saturday_pseudoflight_1.csv' given_object = 'uassar3 triangle 3.csv' meters = 3 size = 500 eyeballing_start_time = 160 eyeballing_end_time = 750 time_offset = 12 range_offset = 0.2 time_stamps = radar_data['time_stamp'] scan_data = radar_data['scan_data'] range_bins = radar_data['range_bins'] scan_data = np.array(scan_data).astype(float) #optional rcs need button for this
def extract_time_stamp(): array = list() time_array = list() data = pandas.read_csv(platform_position_data, skiprows=6) for elements in data: if "Time" in elements: array.append(elements) for contents2 in array: time_array.append(data[contents2][0:].values) time_array = np.array(time_array).astype(np.float) return time_array def get_range(radar_xpos, radar_ypos, radar_zpos, img_x, img_y, img_z): return math.sqrt((radar_xpos - img_x)**2 + (radar_ypos - img_y)**2 + (radar_zpos - img_z)**2) radar_data = unpack('UASSAR3_Saturday_test1_scan') platform_position_data = 'UASSAR_3_saturday_test_1_scan.csv' given_object = 'triangle.csv' meters = 7 size = 500 eyeballing_start_time = 200 eyeballing_end_time = 700 time_offset = 19.5 range_offset = 0.6 time_stamps = radar_data['time_stamp'] scan_data = radar_data['scan_data'] range_bins = radar_data['range_bins'] scan_data = np.array(scan_data).astype(float)
''' #Import required modules from pulson440_unpack import unpack from read_files import read_radar_data, read_motion_data from rcs import rcs from data_align import align_data from GeneralAlignedRangeTimeGraph import AlignedGraph from LinInt import BackProjection from Deconvolution import deconvolute from plotRTI import plotRTI from FastLinInt import FastBackProjection from helper_functions import linear_interp_nan import matplotlib.pyplot as plt #Converts motion and RADAR data to the right data structures unpack("../Raw_Data/uavsar3flight5") #Loads data from the RADAR motion_data = read_motion_data("../Raw_Data/UAVSAR3Flight5.csv", "UAVSAR3") motion_data = linear_interp_nan(motion_data[1], motion_data[0]) radar_data = read_radar_data("data.pkl", 580, 2) #580, 0.25 is probably good #Performs RCS correction radar_data = rcs(radar_data) #Plot RTI for radar_data plotRTI(radar_data) #Set parameters #Take motion_start and motion_end from .tak file video #Estimate radar_start from the plotRTI above, initially comment out code below