Ejemplo n.º 1
0
 def __init__(self, param1, param2, param3):
     self.radar_data = unpack(param1)
     self.platform_position_data = param2
     self.given_object = param3
     self.meters = 0
     self.size = 0
     self.eyeballing_start_time = 0
     self.eyeballing_end_time = 0
     self.time_offset = 0
     self.range_offset = 0
Ejemplo n.º 2
0
'''
#Import required modules
from pulson440_unpack import unpack
from read_files import read_radar_data, read_motion_data
from rcs import rcs
from data_align import align_data
from GeneralAlignedRangeTimeGraph import AlignedGraph
from FastLinInt import FastBackProjection
from LinInt import BackProjection
from Deconvolution import deconvolute
from plotRTI import plotRTI
from helper_functions import linear_interp_nan
import pickle

#Converts motion and RADAR data to the right data structures
unpack("../Raw_Data/uavsar1flight7")

#Loads data from the RADAR
motion_data = read_motion_data("../Raw_Data/UAVSAR1Flight7.csv", "UAVSAR1")
motion_data = linear_interp_nan(motion_data[1], motion_data[0])
radar_data = read_radar_data("data.pkl", 580, 0.3)  #580, 0.30 is probably good

#Performs RCS correction
radar_data = rcs(radar_data)

#Plot RTI for radar_data
plotRTI(radar_data)

#Set parameters
#Take motion_start and  motion_end from .tak file video
#Estimate radar_start from the plotRTI above, initially comment out code below
Ejemplo n.º 3
0
from pulson440_unpack import unpack
from backprojection import interp_approach
import matplotlib.pyplot as plt
import numpy as np
import pandas
import math

radar_data = unpack('UASSAR3_Final_1')
platform_position_data = 'uassar3_final_2.csv'
given_object = 'Right_Ref_Refl-FinalEvent.csv'
meters = 3
eyeballing_start_time = 160
eyeballing_end_time = 750
time_offset = 12
range_offset = 0.2


def extract_platform_position():
    array = list()
    new_array = list()
    position_array = list()
    final_result = list()
    data = pandas.read_csv(platform_position_data,
                           skiprows=2,
                           low_memory=False)
    for elements in data:
        if "Rigid Body" in elements and "Marker" not in elements:
            array.append(elements)
    for contents in array:
        for col in data[contents]:
            if type(col) == str and "Position" in col:
Ejemplo n.º 4
0
@author: Mason + David 
'''

#Import required modules
from pulson440_unpack import unpack 
from read_files import read_radar_data, read_motion_data
from radar_movement import find_point_one_radar, find_i_of_first_motion, find_i_of_last_motion
from data_align import align_data
from GeneralAlignedRangeTimeGraph import AlignedGraph 
from FastLinInt import BackProjection
from read_intensity import read_intensity
from Deconvolution import deconvolute
from backprojection import interp_approach, main #Ramu's backprojection

#Converts motion and RADAR data to the right data structures
unpack("../Raw_Data/uavsar1flight1") #Currently commented out because unused

#Loads data from the RADAR
motion_data = read_motion_data("../Raw_Data/UAVSAR1Flight1.csv","UAVSAR1")
radar_data = read_radar_data("../Raw_Data/data.pkl")

#Finds the first point of the motion data that it starts to move
#motion_start = find_i_of_first_motion(motion_data)

#Finds the last point of the motion data that it moves
#motion_end = find_i_of_last_motion(motion_data)

#Finds the first point in the radar data that it starts to move
#radar_start = find_point_one_radar(radar_data)

radar_start = 600
Ejemplo n.º 5
0
    data = pandas.read_csv(platform_position_data, skiprows=6)
    for elements in data:
        if "Time" in elements:
            array.append(elements)
    for contents2 in array:
        time_array.append(data[contents2][0:].values)
    time_array = np.array(time_array).astype(np.float)
    return time_array


def get_range(radar_xpos, radar_ypos, radar_zpos, img_x, img_y, img_z):
    return math.sqrt((radar_xpos - img_x)**2 + (radar_ypos - img_y)**2 +
                     (radar_zpos - img_z)**2)


radar_data = unpack('UASSAR3_Saturday_pseudoflight_1')
platform_position_data = 'uassar3_saturday_pseudoflight_1.csv'
given_object = 'uassar3 triangle 3.csv'
meters = 3
size = 500
eyeballing_start_time = 160
eyeballing_end_time = 750
time_offset = 12
range_offset = 0.2

time_stamps = radar_data['time_stamp']
scan_data = radar_data['scan_data']
range_bins = radar_data['range_bins']

scan_data = np.array(scan_data).astype(float)
#optional rcs need button for this
Ejemplo n.º 6
0
def extract_time_stamp():
    array = list()
    time_array = list()
    data = pandas.read_csv(platform_position_data, skiprows=6)
    for elements in data:
        if "Time" in elements:
            array.append(elements)
    for contents2 in array:
        time_array.append(data[contents2][0:].values)
    time_array = np.array(time_array).astype(np.float)
    return time_array

def get_range(radar_xpos, radar_ypos, radar_zpos, img_x, img_y, img_z):
    return math.sqrt((radar_xpos - img_x)**2 + (radar_ypos - img_y)**2 + (radar_zpos - img_z)**2)

radar_data = unpack('UASSAR3_Saturday_test1_scan')
platform_position_data = 'UASSAR_3_saturday_test_1_scan.csv'
given_object = 'triangle.csv'
meters = 7
size = 500
eyeballing_start_time = 200
eyeballing_end_time = 700
time_offset = 19.5
range_offset = 0.6

time_stamps = radar_data['time_stamp']
scan_data = radar_data['scan_data']
range_bins = radar_data['range_bins']

scan_data = np.array(scan_data).astype(float)
Ejemplo n.º 7
0
'''
#Import required modules
from pulson440_unpack import unpack
from read_files import read_radar_data, read_motion_data
from rcs import rcs
from data_align import align_data
from GeneralAlignedRangeTimeGraph import AlignedGraph
from LinInt import BackProjection
from Deconvolution import deconvolute
from plotRTI import plotRTI
from FastLinInt import FastBackProjection
from helper_functions import linear_interp_nan
import matplotlib.pyplot as plt

#Converts motion and RADAR data to the right data structures
unpack("../Raw_Data/uavsar3flight5")

#Loads data from the RADAR
motion_data = read_motion_data("../Raw_Data/UAVSAR3Flight5.csv", "UAVSAR3")
motion_data = linear_interp_nan(motion_data[1], motion_data[0])
radar_data = read_radar_data("data.pkl", 580, 2)  #580, 0.25 is probably good

#Performs RCS correction
radar_data = rcs(radar_data)

#Plot RTI for radar_data
plotRTI(radar_data)

#Set parameters
#Take motion_start and  motion_end from .tak file video
#Estimate radar_start from the plotRTI above, initially comment out code below