Ejemplo n.º 1
0
    def detect(self, frame, **kwargs):
        # convert roi-plugin to detector roi
        roi = Roi(*self.g_pool.roi.bounds)

        debug_img = frame.bgr if self.g_pool.display_mode == "algorithm" else None
        result = self.detector_2d.detect(
            gray_img=frame.gray,
            color_img=debug_img,
            roi=roi,
        )

        norm_pos = normalize(result["location"], (frame.width, frame.height),
                             flip_y=True)

        # Create basic pupil datum
        datum = self.create_pupil_datum(
            norm_pos=norm_pos,
            diameter=result["diameter"],
            confidence=result["confidence"],
            timestamp=frame.timestamp,
        )

        # Fill out 2D model data
        datum["ellipse"] = {}
        datum["ellipse"]["axes"] = result["ellipse"]["axes"]
        datum["ellipse"]["angle"] = result["ellipse"]["angle"]
        datum["ellipse"]["center"] = result["ellipse"]["center"]

        return datum
Ejemplo n.º 2
0
    def detect(self, frame):
        roi = Roi(*self.g_pool.u_r.get()[:4])
        if (not 0 <= roi.x_min <= roi.x_max < frame.width
                or not 0 <= roi.y_min <= roi.y_max < frame.height):
            # TODO: Invalid ROIs can occur when switching camera resolutions, because we
            # adjust the roi only after all plugin recent_events() have been called.
            # Optimally we make a plugin out of the ROI and call its recent_events()
            # immediately after the backend, before the detection.
            logger.debug(
                f"Invalid Roi {roi} for img {frame.width}x{frame.height}!")
            return None

        debug_img = frame.bgr if self.g_pool.display_mode == "algorithm" else None
        result = self.detector_2d.detect(
            gray_img=frame.gray,
            color_img=debug_img,
            roi=roi,
        )
        eye_id = self.g_pool.eye_id
        location = result["location"]
        result["norm_pos"] = normalize(location, (frame.width, frame.height),
                                       flip_y=True)
        result["timestamp"] = frame.timestamp
        result["topic"] = f"pupil.{eye_id}"
        result["id"] = eye_id
        result["method"] = "2d c++"
        return result
Ejemplo n.º 3
0
 def process(self, img):
     if img is None:
         return
     height, width = img.shape[0], img.shape[1]
     gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
     timestamp = uvc.get_time_monotonic()
     roi = None
     if self.bbox is not None:
         xmin, ymin, w, h = self.bbox
         roi = Roi(xmin, ymin, xmin+w, ymin+h)
     result = self.detector.detect(gray, timestamp, roi=roi)
     #print(result)
     if result["model_confidence"] > 0.25:
         sphere = result["projected_sphere"]
         self.__draw_ellipse(sphere, img, (255,120,120), 1) 
     if result["confidence"] > 0.5:
         n = np.array(result['circle_3d']['normal']) 
         self.bbox = self.__get_bbox(result, img)    
         self.__draw_tracking_info(result, img)
         # cv2.imshow("testando", img)
         # cv2.waitKey(1)
         self.pos = np.array([n[0], n[1], n[2], time.monotonic()])
         self.countdown = 5
     else:
         self.countdown -= 1
         if self.countdown <= 0:
             self.pos = None
             self.bbox = None
     return img
Ejemplo n.º 4
0
 def detect(self, frame):
     roi = Roi(*self.g_pool.u_r.get()[:4])
     result = self.detector_2d.detect(gray_img=frame.gray,
                                      color_img=frame.bgr,
                                      roi=roi)
     eye_id = self.g_pool.eye_id
     location = result["location"]
     result["norm_pos"] = normalize(location, (frame.width, frame.height),
                                    flip_y=True)
     result["timestamp"] = frame.timestamp
     result["topic"] = f"pupil.{eye_id}"
     result["id"] = eye_id
     result["method"] = "2d c++"
     return result
Ejemplo n.º 5
0
    def detect(self, frame, **kwargs):
        # convert roi-plugin to detector roi
        roi = Roi(*self.g_pool.roi.bounds)

        debug_img = frame.bgr if self.g_pool.display_mode == "algorithm" else None
        result = self.detector_2d.detect(
            gray_img=frame.gray,
            color_img=debug_img,
            roi=roi,
        )
        eye_id = self.g_pool.eye_id
        location = result["location"]
        result["norm_pos"] = normalize(location, (frame.width, frame.height),
                                       flip_y=True)
        result["timestamp"] = frame.timestamp
        result["topic"] = f"pupil.{eye_id}.{self.identifier}"
        result["id"] = eye_id
        result["method"] = "2d c++"
        return result
Ejemplo n.º 6
0
    def detect(self, frame):
        # convert roi-plugin to detector roi
        roi = Roi(*self.g_pool.roi.bounds)

        debug_img = frame.bgr if self.g_pool.display_mode == "algorithm" else None
        result = self.detector_3d.detect(
            gray_img=frame.gray,
            timestamp=frame.timestamp,
            color_img=debug_img,
            roi=roi,
            debug=self.is_debug_window_open,
        )

        eye_id = self.g_pool.eye_id
        location = result["location"]
        result["norm_pos"] = normalize(location, (frame.width, frame.height),
                                       flip_y=True)
        result["topic"] = f"pupil.{eye_id}"
        result["id"] = eye_id
        result["method"] = "3d c++"
        return result
Ejemplo n.º 7
0
    def detect(self, frame, **kwargs):
        self._process_focal_length_changes()

        # convert roi-plugin to detector roi
        roi = Roi(*self.g_pool.roi.bounds)

        debug_img = frame.bgr if self.g_pool.display_mode == "algorithm" else None
        result = self.detector_3d.detect(
            gray_img=frame.gray,
            timestamp=frame.timestamp,
            color_img=debug_img,
            roi=roi,
            debug=self.is_debug_window_open,
            internal_raw_2d_data=kwargs.get("internal_raw_2d_data", None),
        )
        # print(kwargs.get("internal_raw_2d_data", None))
        #print("-----------------")
        #for key, value in result.items():
        #    #print(key + ": " + str(type(value)))
        #    if not isinstance(value, dict) and not isinstance(value, bytes):
        #        print(key + ": " + str(value))
        #    elif isinstance(value, dict):
        #        print(key + ":")
        #        for key2, value2 in value.items():
        #            print("- " + key2 + ": " + str(value2))
        #    else:
        #        print(key + ": " + str(type(value)))

        eye_id = self.g_pool.eye_id
        location = result["location"]
        result["norm_pos"] = normalize(location, (frame.width, frame.height),
                                       flip_y=True)
        result["topic"] = f"pupil.{eye_id}.{self.identifier}"
        result["id"] = eye_id
        result["method"] = "3d c++"
        return result
Ejemplo n.º 8
0
    def detect(self, frame, **kwargs):
        self._process_focal_length_changes()

        # convert roi-plugin to detector roi
        roi = Roi(*self.g_pool.roi.bounds)

        debug_img = frame.bgr if self.g_pool.display_mode == "algorithm" else None
        result = self.detector_3d.detect(
            gray_img=frame.gray,
            timestamp=frame.timestamp,
            color_img=debug_img,
            roi=roi,
            debug=self.is_debug_window_open,
            internal_raw_2d_data=kwargs.get("internal_raw_2d_data", None),
        )

        eye_id = self.g_pool.eye_id
        location = result["location"]
        result["norm_pos"] = normalize(location, (frame.width, frame.height),
                                       flip_y=True)
        result["topic"] = f"pupil.{eye_id}.{self.identifier}"
        result["id"] = eye_id
        result["method"] = "3d c++"
        return result