Ejemplo n.º 1
0
def test_methods():
    tr = crys.Trajectory(coords=rand(100, 10, 3),
                         cell=rand(100, 3, 3),
                         symbols=['H'] * 10)
    st = crys.Structure(coords=rand(10, 3),
                        cell=rand(3, 3),
                        symbols=['H'] * 10)

    for obj, indices in [(st, [0, 1, 2]), (tr, [0, 0, 1, 2])]:
        if obj.is_traj:
            v0 = obj.coords[indices[0], indices[1], ...]
            v1 = obj.coords[indices[0], indices[2], ...]
            v2 = obj.coords[indices[0], indices[3], ...]
        else:
            v0 = obj.coords[indices[0], ...]
            v1 = obj.coords[indices[1], ...]
            v2 = obj.coords[indices[2], ...]
        # use eps=0 since the new system is not orthogonal, only test API
        o1 = crys.align_cart(obj, x=v1 - v0, y=v2 - v0, eps=0)
        o2 = crys.align_cart(obj, vecs=np.array([v0, v1, v2]), eps=0)
        o3 = crys.align_cart(obj, indices=indices, eps=0)
        tools.assert_dict_with_all_types_almost_equal(o1.__dict__,
                                                      o2.__dict__,
                                                      keys=o1.attr_lst)
        tools.assert_dict_with_all_types_almost_equal(o1.__dict__,
                                                      o3.__dict__,
                                                      keys=o1.attr_lst)
Ejemplo n.º 2
0
def test_pbc_wrap():
    coords_frac_orig = np.array([[1.1, 0.9, -0.1], [-0.8, 0.5, 0.0]])
    st = crys.Structure(coords_frac=coords_frac_orig,
                        cell=np.identity(3) * 2,
                        symbols=['H'] * 2)
    st_wrap = crys.pbc_wrap(st)
    # pbc_wrap() makes a copy by default, make sure the original st is unchanged
    assert (st.coords_frac == coords_frac_orig).all()
    assert (st.coords == coords_frac_orig * 2.0).all()
    coords_frac_wrap = np.array([[0.1, 0.9, 0.9], [0.2, 0.5, 0.]])
    assert np.allclose(coords_frac_wrap, st_wrap.coords_frac)
    assert np.allclose(coords_frac_wrap, st_wrap.coords / 2.0)

    coords_frac_wrap = np.random.rand(20, 100, 3)
    plus = np.random.randint(-1, 1, coords_frac_wrap.shape)
    coords_frac_orig = coords_frac_wrap + plus
    tr = crys.Trajectory(coords_frac=coords_frac_orig,
                         cell=np.identity(3) * 2.0,
                         symbols=['H'] * 100)

    tr_wrap = crys.pbc_wrap(tr, xyz_axis=-1)
    assert (tr.coords_frac == coords_frac_orig).all()
    assert (tr.coords == coords_frac_orig * 2.0).all()
    assert np.allclose(coords_frac_orig[plus == 0],
                       tr_wrap.coords_frac[plus == 0])
    assert np.allclose(coords_frac_orig[plus == -1] + 1,
                       tr_wrap.coords_frac[plus == -1])
    assert np.allclose(coords_frac_orig[plus == 1] - 1,
                       tr_wrap.coords_frac[plus == 1])
    assert np.allclose(coords_frac_wrap, tr_wrap.coords_frac)
    assert np.allclose(coords_frac_wrap, tr_wrap.coords / 2.0)

    tr_wrap = crys.pbc_wrap(tr, mask=[True, True, False], xyz_axis=-1)
    assert np.allclose(tr.coords_frac[..., 2], tr_wrap.coords_frac[..., 2])
Ejemplo n.º 3
0
rand = np.random.rand

# Cubic box with random points and L=20, so rmax_auto=10. We randomly choose
# some atoms to be O, the rest H, which lets us test 2 selections.
#
# For rpdf(), g(r) goes to zero for r > 10 b/c the minimum image convention is
# violated. VMD is correct up to 2*sqrt(0.5)*rmax_auto b/c they apply their
# "spherical cap"-correction.
#
# norm_vmd: For debugging, we also calculate with norm_vmd=True, which results
# in slightly wrong g(r) for the all-all case, while num_int is always correct.
#
# The blue curves rpdf(..., norm_vmd=False) are correct up to rmax_auto.

t1 = crys.Trajectory(coords_frac=rand(100, 20, 3),
                     cell=np.identity(3) * 20,
                     symbols=['O'] * 5 + ['H'] * 15)
sy = np.array(t1.symbols)
dr = 0.1
rmax = 25

dct = {
    'amask': [[sy == 'O', sy == 'H'], None],
    'sel': [['name O', 'name H'], ['all', 'all']]
}

plots = []
for ii in range(2):
    amask = dct['amask'][ii]
    sel = dct['sel'][ii]
    title = sel[0] + ',' + sel[1]
Ejemplo n.º 4
0
def test_rpdf():
    have_vmd = os.system('which vmd > /dev/null 2>&1') == 0
    for name in ['rand_3d', 'aln_ibrav0_sc', 'aln_ibrav2_sc']:
        print(("name: %s" % name))
        dd = 'files/rpdf'
        if name == 'rand_3d':
            # 2 Trajectory = 2 selections
            cell = np.loadtxt(pj(dd, name + '.cell.txt'))
            coords_frac = [
                load_old(pj(dd, name + '.coords0.txt')),
                load_old(pj(dd, name + '.coords1.txt'))
            ]
            trajs = [
                crys.Trajectory(coords_frac=cf, cell=cell)
                for cf in coords_frac
            ]
            for tr in trajs:
                assert tr.coords_frac.shape == (20, 10, 3)
                assert tr.nstep == 20
                assert tr.natoms == 10
        else:
            # one Structure
            struct = parse.CifFile(pj(dd, name + '.cif')).get_struct()
            trajs = [struct]
            cell = struct.cell

        ret = crys.rpdf(trajs, rmax=5.0, dr=0.05, pbc=True)

        # rpdf() -- compere w/ ref
        results = {
            'rad': ret[:, 0],
            'hist': ret[:, 1],
            'num_int': ret[:, 2],
            'rmax_auto': np.array(crys.rmax_smith(cell)),
        }
        for key, val in results.items():
            print(("    key: %s" % key))
            ref_fn = pj(dd, "result.%s.%s.txt" % (key, name))
            print(("    reference file: %s" % ref_fn))
            ref = np.loadtxt(ref_fn)
            if doplot:
                plt.figure()
                plt.plot(ref, '.-', label='ref')
                plt.plot(val, '.-', label='val')
                plt.legend()
                plt.title(key)
            else:
                # decimal=3 b/c ref data created w/ older implementation,
                # slight numerical noise
                np.testing.assert_array_almost_equal(ref, val, decimal=3)
                print(("    key: %s ... ok" % key))

        # API
        if name.startswith('aln_'):
            sy = np.array(trajs[0].symbols)
            ret1 = crys.rpdf(trajs, dr=0.1, amask=[sy == 'Al', sy == 'N'])
            ret2 = crys.rpdf(trajs, dr=0.1, amask=['Al', 'N'])
            aae(ret1, ret2)

    # API:
    #   [traj, traj]
    #   [traj]
    #   traj
    traj = crys.Trajectory(coords_frac=rand(100, 20, 3),
                           cell=np.identity(3) * 20,
                           symbols=['O'] * 5 + ['H'] * 15)
    ret1 = crys.rpdf([traj, traj], rmax=5.0, dr=0.05, pbc=True)
    ret2 = crys.rpdf([traj], rmax=5.0, dr=0.05, pbc=True)
    aae(ret1, ret2)
    ret3 = crys.rpdf(traj, rmax=5.0, dr=0.05, pbc=True)
    aae(ret1, ret3)

    # dmask
    ret = crys.rpdf(traj, rmax=5.0, dr=0.05, dmask='>=2.0')
    msk = ret[:, 0] >= 2.0
    imsk = np.invert(msk)
    assert (ret[msk, 1] > 0.0).any()
    assert (ret[imsk, 1] == 0.0).all()
    ret = crys.rpdf(traj, rmax=5.0, dr=0.05, dmask='{d}>=2.0')
    assert (ret[msk, 1] > 0.0).any()
    assert (ret[imsk, 1] == 0.0).all()
    ret = crys.rpdf(traj,
                    rmax=5.0,
                    dr=0.05,
                    dmask='({d} >= 1.0) & ({d} <= 3.0)')
    msk = (ret[:, 0] >= 1.0) & (ret[:, 0] <= 3.0)
    imsk = np.invert(msk)
    assert (ret[msk, 1] > 0.0).any()
    assert (ret[imsk, 1] == 0.0).all()

    if have_vmd:
        # slicefirst and API
        print("vmd_measure_gofr: slicefirst ...")
        traj = crys.Trajectory(coords_frac=rand(100, 20, 3),
                               cell=np.identity(3) * 20,
                               symbols=['O'] * 5 + ['H'] * 15)

        for first, last, step in [(0, -1, 1), (20, 80, 10)]:
            ret = []
            for sf in [True, False]:
                print("first=%i, last=%i, step=%i, slicefirst=%s" %
                      (first, last, step, sf))
                tmp = crys.vmd_measure_gofr(
                    traj,
                    dr=0.1,
                    rmax='auto',
                    sel=['all', 'all'],
                    slicefirst=sf,
                    first=first,
                    last=last,
                    step=step,
                    usepbc=1,
                    tmpdir=testdir,
                    verbose=False,
                )
                ret.append(tmp)

            assert np.allclose(ret[0][:, 0], ret[1][:, 0])
            assert np.allclose(ret[0][:, 1], ret[1][:, 1])
            assert np.allclose(ret[0][:, 2], ret[1][:, 2])

        # API call_vmd_measure_gofr()
        trajfn = pj(testdir, 'vmd_xsf_call_vmd_measure_gofr')
        data = io.write_axsf(trajfn, traj)
        ret = crys.call_vmd_measure_gofr(trajfn,
                                         dr=0.1,
                                         rmax=10,
                                         sel=['all', 'all'],
                                         fntype='xsf',
                                         first=0,
                                         last=-1,
                                         step=1,
                                         usepbc=1,
                                         datafn=None,
                                         scriptfn=None,
                                         logfn=None,
                                         tmpdir=testdir,
                                         verbose=False)

        # compare results, up to L/2 = rmax_auto = 10 = rmax_smith(cell)

        # all-all, hist will differ
        rmax = 10
        vmd = crys.vmd_measure_gofr(traj, dr=0.1, sel=['all', 'all'], rmax=10)
        pwt = crys.rpdf(traj, dr=0.1, amask=None, rmax=10)
        assert np.allclose(vmd[:-1, 0], pwt[:, 0])  # rad
        ##assert np.allclose(vmd[:-1,1], pwt[:,1]) # hist
        assert np.allclose(vmd[:-1, 2], pwt[:, 2])  # num_int

        # 2 selections, all ok
        sy = np.array(traj.symbols)
        vmd = crys.vmd_measure_gofr(traj,
                                    dr=0.1,
                                    sel=['name O', 'name H'],
                                    rmax=10)
        pwt = crys.rpdf(traj, dr=0.1, amask=[sy == 'O', sy == 'H'], rmax=10)
        assert np.allclose(vmd[:-1, 0], pwt[:, 0])  # rad
        assert np.allclose(vmd[:-1, 1], pwt[:, 1])  # hist
        assert np.allclose(vmd[:-1, 2], pwt[:, 2])  # num_int

        if doplot:
            plt.show()
Ejemplo n.º 5
0
def test_rms():
    natoms = 5
    nstep = 10
    arr1 = np.random.rand(nstep, 3, natoms)
    arr2 = np.random.rand(natoms, nstep, 3)
    arr3 = np.random.rand(natoms, 3, nstep)

    # Test if rms() works.
    r3_rms_all1 = crys.rms(arr3, nitems='all')
    r3_rms_natoms1 = crys.rms(arr3, nitems=natoms)
    r3_rms_all2 = np.sqrt((arr3**2.0).sum() / float(3 * natoms * nstep))
    r3_rms_natoms2 = np.sqrt((arr3**2.0).sum() / float(natoms))
    np.testing.assert_almost_equal(r3_rms_all1, r3_rms_all2)
    np.testing.assert_almost_equal(r3_rms_natoms1, r3_rms_natoms2)

    # Test if rms3d() operates correctly along each axis.
    r1_3d = crys.rms3d(arr1, axis=0, nitems='all')
    r2_3d = crys.rms3d(arr2, axis=1, nitems='all')
    r3_3d = crys.rms3d(arr3, axis=2, nitems='all')
    r1_loop = np.empty((nstep, ), dtype=float)
    r2_loop = np.empty((nstep, ), dtype=float)
    r3_loop = np.empty((nstep, ), dtype=float)
    for k in range(nstep):
        r1_loop[k] = crys.rms(arr1[k, ...], nitems='all')
        r2_loop[k] = crys.rms(arr2[:, k, :], nitems='all')
        r3_loop[k] = crys.rms(arr3[..., k], nitems='all')
    np.testing.assert_array_almost_equal(r1_3d, r1_loop)
    np.testing.assert_array_almost_equal(r2_3d, r2_loop)
    np.testing.assert_array_almost_equal(r3_3d, r3_loop)

    # Test if rmsd() works.
    #
    # NOTE: Subtle numpy issue here:
    # It is very important NOT to use
    #     R -= R[...,0][...,None]
    # or
    #     for k in range(R.shape[-1]):
    #         R[...,k] -= R[...,0][...,None]
    # because R itself is changed in the loop! You have to copy the reference
    # R[...,0] first and then broadcast it for subtracting. What also works is
    # this:
    #     R = R - R[...,0][...,None]
    # HOWEVER, THIS DOES NOT:
    #     for k in range(R.shape[-1]):
    #         R[...,k] = R[...,k] - R[...,0][...,None]
    traj = crys.Trajectory(coords=np.random.rand(nstep, natoms, 3))
    assert traj.timeaxis == 0
    assert traj.nstep == nstep
    from_rmsd = crys.rmsd(traj, ref_idx=0)
    from_loop = np.empty((nstep, ), dtype=float)
    from_rms3d = crys.rms3d(traj.coords - traj.coords[0, ...][None, ...],
                            nitems=natoms,
                            axis=0)
    R = traj.coords.copy()
    ref = R[0, ...].copy()
    for k in range(nstep):
        R[k, ...] -= ref
        from_loop[k] = np.sqrt((R[k, ...]**2.0).sum() / natoms)

    np.testing.assert_array_almost_equal(from_rmsd, from_loop)
    np.testing.assert_array_almost_equal(from_rmsd, from_rms3d)