def __init__(self, projection, weights=0.0, delays=None, allow_self_connections=True, space=Space(), safe=True): Connector.__init__(self, weights, delays, space, safe) if isinstance(projection.rng, random.NativeRNG): raise Exception("Use of NativeRNG not implemented.") else: self.rng = projection.rng self.N = projection.pre.size idx = numpy.arange(self.N * rank(), self.N * (rank() + 1)) self.M = num_processes() * self.N self.local = numpy.ones(self.N, bool) self.local_long = numpy.zeros(self.M, bool) self.local_long[idx] = True self.weights_generator = WeightGenerator(weights, self.local_long, projection, safe) self.delays_generator = DelayGenerator(delays, self.local_long, safe) self.probas_generator = ProbaGenerator( random.RandomDistribution('uniform', (0, 1), rng=self.rng), self.local_long) self.distance_matrix = DistanceMatrix(projection.pre.positions, self.space, self.local) self.projection = projection self.candidates = projection.pre.all_cells self.allow_self_connections = allow_self_connections
def connect(self, projection): """Connect-up a Projection.""" if self.distributed: self.filename += ".%d" % common.rank() # open the file... f = open(self.filename, 'r', 10000) lines = f.readlines() f.close() # gather all the data in a list of tuples (one per line) input_tuples = [] for line in lines: single_line = line.rstrip() src, tgt, w, d = single_line.split("\t", 4) src = "[%s" % src.split("[",1)[1] tgt = "[%s" % tgt.split("[",1)[1] input_tuples.append((eval(src), eval(tgt), float(w), float(d))) self.conn_list = input_tuples FromListConnector.connect(self, projection)
def connect(self, projection): """Connect-up a Projection.""" if self.distributed: self.filename += ".%d" % common.rank() # open the file... f = open(self.filename, 'r', 10000) lines = f.readlines() f.close() # gather all the data in a list of tuples (one per line) input_tuples = [] for line in lines: single_line = line.rstrip() src, tgt, w, d = single_line.split("\t", 4) src = "[%s" % src.split("[", 1)[1] tgt = "[%s" % tgt.split("[", 1)[1] input_tuples.append((eval(src), eval(tgt), float(w), float(d))) self.conn_list = input_tuples FromListConnector.connect(self, projection)
def connect(self, projection): """Connect-up a Projection.""" if self.distributed: self.file.rename("%s.%d" % (self.file.name, common.rank())) self.conn_list = self.file.read() FromListConnector.connect(self, projection)
def progression(self, count): self.prog.update_amount(count) if self.verbose and common.rank() == 0: print self.prog, "\r", sys.stdout.flush()