import py_util as pyu import py_func as pyf import numpy as np import tensorflow as tf import tf_func as tff import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split nnParams = pyu.loadNN("log/nnParams.npz") featParams = pyu.loadFeat("log/featParams.npz") tf_feat = tf.placeholder(tf.float32, (None, featParams['nFeat'])) L3 = tff.getE(tf_feat, featParams['nFeat'], nnParams) Router = 8 atomList, atomType, R_surf = pyu.loadXYZ("surface_cu.xyz") atomList, atomType, R_Cu = pyu.loadXYZ("cu_np.xyz") Ei = np.zeros(len(R_surf)) Emask = np.zeros(len(R_surf)) with tf.Session() as sess: saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)) sess.run(tf.global_variables_initializer()) saver.restore(sess, "./log/model.ckpt") for i in range(len(R_surf)): # for Rs in R_surf[:10]: Rl = R_surf[i] - R_Cu dl = np.sqrt(np.sum(Rl**2, axis=-1)) dl[dl > Router] = 0
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 21:11:07 2018 @author: hif10 """ import py_util as pyu import py_func as pyf import numpy as np nnParams = pyu.loadNN("nnParams.npz") featParams = pyu.loadFeat("featParams.npz") atomList, atomType, R_surf = pyu.loadXYZ('Cu_surf2.xyz') atomList, atomType, R = pyu.loadXYZ('CuC_NP.xyz') R_Cu = R[atomList == atomType.index('Cu')] nCase = 500 Rcut = 20.0 # radius for the initial cluster Rcut4 = 15.0 Rcut2 = 3.0 # nearest neighbor distance Rcut3 = 8.0 # angleCutoff=45 dCu0C0 = [2.0, 2.56, 2.59, 2.0, 1.98] dCu1C1 = [2.0, 2.0, 2.0, 2.14, 2.19] dC0C1 = [1.47, 1.41, 1.34, 1.45,1.36] dC0O0 = [1.39, 1.41, 1.41, 1.39, 1.4] dC1O1 = [1.22, 1.19, 1.19, 1.24, 1.2] dC0H = [1.91, 1.91, 1.91, 1.91, 1.92]