Ejemplo n.º 1
0
def im_test(im):
    face_info = lib.align(im[:, :, (2, 1, 0)], front_face_detector,
                          lmark_predictor)
    # Samples
    if len(face_info) == 0:
        logging.warning('No faces are detected.')
        prob = -1  # we ignore this case
    else:
        # Check how many faces in an image
        logging.info('{} faces are detected.'.format(len(face_info)))
        max_prob = -1
        # If one face is fake, the image is fake
        for _, point in face_info:
            rois = []
            for i in range(sample_num):
                roi, _ = lib.cut_head([im], point, i)
                rois.append(cv2.resize(roi[0], tuple(cfg.IMG_SIZE[:2])))
            vis_im(rois, 'tmp/vis.jpg')
            prob = solver.test(rois)
            prob = np.mean(
                np.sort(prob[:, 0])[np.round(sample_num / 2).astype(int):])
            if prob >= max_prob:
                max_prob = prob
        prob = max_prob
    return prob
def preprocess(im, willSimulateDeepfake=False):
    '''
    Given an image, attempts to detect a face. If none is found, returns None. Returns the image resized to as specified by IMG_SIZE.
    If instructed to simulate Deepfake, simulation will be applied before resizing.
    '''

    # list of tuples of (transformation matrix, landmark point) of identified faces
    faces = lib.align(im[:, :, (2, 1, 0)], front_face_detector,
                      lmark_predictor)

    if len(faces) == 0:
        return None

    trans_matrix, point = faces[0]  # take only the first face found

    if willSimulateDeepfake:
        im = simulateDeepfake(im, trans_matrix, point)

    # GENERALIZATION STEP. REMOVED AFTER ACCURACY LOWERED.
    # crop image, after randomly expanding ROI (minimum bounding box b) in each direction between
    # [0, h/5] and [0, w/8] where h, w are height and width of b. then resize to 256 x 256 for final training data
    # rois, _ = lib.cut_head([im], point, random.randint(0, 10))
    # cropped_output_im = cv2.resize(rois[0], (IMG_SIZE, IMG_SIZE))

    im = cv2.resize(im, (IMG_SIZE, IMG_SIZE))

    return im
Ejemplo n.º 3
0
def preprocess(im): # refactored out of preprocess.py to accommodate the requirements of PyQt5

    '''
    Given an input image, preprocess it the same way as training/testing samples and return the output image.
    '''

    # image size = input size to model
    IMG_SIZE = 256

    front_face_detector = dlib.get_frontal_face_detector()
    lmark_predictor = dlib.shape_predictor('./dlib_model/shape_predictor_68_face_landmarks.dat')
    
    # list of tuples of (transformation matrix, landmark point) of identified faces
    faces = lib.align(im[:, :, (2,1,0)], front_face_detector, lmark_predictor)

    if len(faces) == 0:
        return None

    # PART REMOVED DUE TO LOWER ACCURACY
    # take only the first face found
    # trans_matrix, _ = faces[0]
    # face = cv2.warpAffine(im, trans_matrix * FACE_SIZE, (FACE_SIZE, FACE_SIZE))

    # simply resizing without cropping in to facial region, as accuracy has been found to have increased
    im = cv2.resize(im, (IMG_SIZE, IMG_SIZE))
    return im
Ejemplo n.º 4
0
    def __init__(self, face_img_dir, cache_path):
        self.face_img_dir = face_img_dir
        self.face_img_paths = [
            os.path.join(face_img_dir, im_name)
            for im_name in sorted(os.listdir(face_img_dir))
        ]
        self.data_num = len(self.face_img_paths)
        self.cache_path = cache_path
        # Get landmarks
        face_caches = self._load_cache()
        if face_caches is None:
            # Load dlib
            self._set_up_dlib()
            face_caches = {}
            # Align faces
            print("Aligning faces...")
            for i, im_path in enumerate(tqdm(self.face_img_paths)):
                im = cv2.imread(str(im_path))
                faces = lib.align(im[:, :,
                                     (2, 1, 0)], self.front_face_detector,
                                  self.lmark_predictor)
                if len(faces) == 0:
                    faces = [None, None]
                else:
                    faces = faces[0]
                face_caches[self.face_img_paths[i].stem] = faces
            self._save_cache(face_caches)

        self.face_caches = face_caches
Ejemplo n.º 5
0
def im_test(net, im, args):
    face_info = lib.align(im[:, :, (2, 1, 0)], front_face_detector,
                          lmark_predictor)
    # Samples
    if len(face_info) != 1:
        prob = -1
    else:
        _, point = face_info[0]
        rois = []
        for i in range(sample_num):
            roi, _ = lib.cut_head([im], point, i)
            rois.append(cv2.resize(roi[0], (args.input_size, args.input_size)))

        # vis_ = np.concatenate(rois, 1)
        # cv2.imwrite('vis.jpg', vis_)

        bgr_mean = np.array([103.939, 116.779, 123.68])
        bgr_mean = bgr_mean[np.newaxis, :, np.newaxis, np.newaxis]
        bgr_mean = torch.from_numpy(bgr_mean).float().cuda()

        rois = torch.from_numpy(np.array(rois)).float().cuda()
        rois = rois.permute((0, 3, 1, 2))
        prob = net(rois - bgr_mean)
        prob = F.softmax(prob, dim=1)
        prob = prob.data.cpu().numpy()
        prob = 1 - np.mean(
            np.sort(prob[:, 0])[np.round(sample_num / 2).astype(int):])
    return prob, face_info
Ejemplo n.º 6
0
    def __init__(
        self,
        input_vid_path,
        output_height=300,
    ):
        # Input video
        self.input_vid_path = input_vid_path
        # parse video
        print('Parsing video {}'.format(str(self.input_vid_path)))
        self.imgs, self.frame_num, self.fps, self.img_w, self.img_h = pv.parse_vid(
            str(self.input_vid_path))
        if len(self.imgs) != self.frame_num:
            warnings.warn(
                'Frame number is not consistent with the number of images in video...'
            )
            self.frame_num = len(self.imgs)
        print('Eye blinking solution is building...')

        self._set_up_dlib()

        self.output_height = output_height
        factor = float(self.output_height) / self.img_h

        # Resize imgs for final video generation
        # Resize self.imgs according to self.output_height
        self.aligned_imgs = []
        self.left_eyes = []
        self.right_eyes = []

        self.resized_imgs = []
        print('face aligning...')
        for i, im in enumerate(tqdm(self.imgs)):
            face_cache = lib.align(im[:, :,
                                      (2, 1, 0)], self.front_face_detector,
                                   self.lmark_predictor)
            if len(face_cache) == 0:
                self.left_eyes.append(None)
                self.right_eyes.append(None)
                continue

            if len(face_cache) > 1:
                raise ValueError(
                    '{} faces are in image, we only support one face in image.'
                )

            aligned_img, aligned_shapes_cur = lib.get_aligned_face_and_landmarks(
                im, face_cache)
            # crop eyes
            leye, reye = lib.crop_eye(aligned_img[0], aligned_shapes_cur[0])
            self.left_eyes.append(leye)
            self.right_eyes.append(reye)
            im_resized = cv2.resize(im, None, None, fx=factor, fy=factor)
            self.resized_imgs.append(im_resized)

        # For visualize
        self.plot_vis_list = []
        self.total_eye1_prob = []
        self.total_eye2_prob = []