Ejemplo n.º 1
0
def test_interpolation():
    wts = HornsrevV80()

    path = tfp + 'fuga/2MW/Z0=0.00408599Zi=00400Zeta0=0.00E+00/'
    site = UniformSite([1, 0, 0, 0], ti=0.075)

    plot = 0
    if plot:
        ax1 = plt.gca()
        ax2 = plt.twinx()

    for wdm, n_d_values in (
        (FugaDeficit(path, method='linear'), 4),
        (FugaDeficit(path, method='spline'), 20),
        (FugaYawDeficit(path, method='linear'), 4),
        (FugaYawDeficit(path, method='spline'), 20),
    ):
        wfm = PropagateDownwind(site, wts, wdm)

        sim_res = wfm(x=[0], y=[0], wd=[270], ws=[10], yaw=[[[10]]])
        fm = sim_res.flow_map(XYGrid(x=[200], y=np.arange(-10, 11)))
        fm = sim_res.flow_map(
            XYGrid(x=np.arange(-100, 800, 10), y=np.arange(-10, 11)))

        # linear has 4 line segments with same gradient, while spline has 20 different gradient values
        npt.assert_equal(
            len(np.unique(np.round(np.diff(fm.WS_eff.sel(x=500).squeeze()),
                                   6))), n_d_values)
        if plot:
            ax1.plot(fm.y, fm.WS_eff.sel(x=500).squeeze())
            ax2.plot(fm.y[:-1], np.diff(fm.WS_eff.sel(x=500).squeeze()), '--')

    if plot:
        plt.show()
        plt.close('all')
Ejemplo n.º 2
0
def test_fuga_downwind_vs_notebook():

    powerCtFunction = PowerCtTabular([0, 100], [0, 0], 'w',
                                     [0.850877, 0.850877])
    wt = WindTurbine(name='',
                     diameter=80,
                     hub_height=70,
                     powerCtFunction=powerCtFunction)

    path = tfp + 'fuga/2MW/Z0=0.00001000Zi=00400Zeta0=0.00E+00'
    site = UniformSite([1, 0, 0, 0], ti=0.075)
    wfm_ULT = PropagateDownwind(site, wt, FugaYawDeficit(path))
    WS = 10
    p = Path(tfp) / "fuga/v80_wake_4d_y_no_deflection.csv"
    y, notebook_deficit_4d = np.array(
        [v.split(",") for v in p.read_text().strip().split("\n")],
        dtype=float).T
    sim_res = wfm_ULT([0], [0], wd=270, ws=WS, yaw=[[[17.4493]]])
    fm = sim_res.flow_map(XYGrid(4 * wt.diameter(), y=y))
    npt.assert_allclose(fm.WS_eff.squeeze() - WS,
                        notebook_deficit_4d,
                        atol=1e-6)

    if 0:
        plt.plot(y, notebook_deficit_4d, label='Notebook deficit 4d')
        plt.plot(y, fm.WS_eff.squeeze() - WS)
        plt.show()
    plt.close('all')
Ejemplo n.º 3
0
def test_wake_blockage_split(upstream_only, ref):
    class MyWakeModel(WakeDeficitModel):
        args4deficit = []

        def calc_deficit(self, dw_ijlk, **kwargs):
            return np.ones_like(dw_ijlk) * 2

    class MyBlockageModel(BlockageDeficitModel):
        args4deficit = []

        def calc_deficit(self, dw_ijlk, **kwargs):
            return np.ones_like(dw_ijlk)

    site = Hornsrev1Site()
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(
        site,
        windTurbines,
        wake_deficitModel=MyWakeModel(),
        blockage_deficitModel=MyBlockageModel(upstream_only=upstream_only))
    sim_res = wf_model([0], [0], ws=10, wd=270)
    fm = sim_res.flow_map(XYGrid(x=[-100, 100], y=[-100, 0, 100]))
    if 0:
        sim_res.flow_map().plot_wake_map()
        print(fm.WS_eff.values.squeeze().T)
        plt.show()

    npt.assert_array_equal(fm.WS_eff.values.squeeze().T, ref)
Ejemplo n.º 4
0
 def run(self, windFarmModel):
     windFarmModel.site = self.site
     windFarmModel.windTurbines = self.windTurbines
     fm = windFarmModel([0], [0]).flow_map(XYGrid(y=-self.x, x=0))
     wd = (fm.wd.values + 180) % 360 - 180
     ws = (fm.WS_eff / fm.ws).squeeze()
     return wd, ws
Ejemplo n.º 5
0
def test_yaw_tilt(yaw, tilt, cx, cz):
    site = IEA37Site(16)
    x, y = [0], [0]
    windTurbines = V80()

    D = windTurbines.diameter()
    wfm = IEA37SimpleBastankhahGaussian(
        site, windTurbines, deflectionModel=JimenezWakeDeflection())
    x_lst = np.linspace(-200, 1000, 100)
    y_lst = np.linspace(-100, 100, 201)
    z_lst = np.arange(10, 200, 1)

    fm_yz = wfm(x, y, wd=270, ws=10, yaw=yaw,
                tilt=tilt).flow_map(YZGrid(x=5 * D, y=y_lst, z=z_lst))
    fm_xz = wfm(x, y, wd=180, ws=10, yaw=yaw,
                tilt=tilt).flow_map(YZGrid(x=0, y=x_lst, z=z_lst))
    fm_xy = wfm(x, y, wd=270, ws=10, yaw=yaw,
                tilt=tilt).flow_map(XYGrid(x=x_lst))
    if 0:
        axes = plt.subplots(3, 1)[1].flatten()
        fm_xy.plot_wake_map(ax=axes[0])
        axes[0].axvline(5 * D)
        fm_xz.plot_wake_map(ax=axes[1])
        axes[1].axvline(5 * D)
        fm_yz.plot_wake_map(ax=axes[2])
        plt.show()

    wake_center = fm_yz.WS_eff.where(fm_yz.WS_eff == fm_yz.WS_eff.min(),
                                     drop=True).squeeze()
    npt.assert_allclose(wake_center.y, cx, atol=.1)
    npt.assert_allclose(wake_center.h, cz, atol=.24)
Ejemplo n.º 6
0
def test_YZGrid_terrain_parallel():
    site = ParqueFicticioSite(distance=StraightDistance())
    x, y = site.initial_position.T
    windTurbines = IEA37_WindTurbines()

    wind_farm_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
    simulation_result = wind_farm_model(x, y, wd=0, ws=10)
    x = 264000
    fm = simulation_result.flow_map(
        grid=YZGrid(x, z=110, resolution=20, extend=0))
    y = fm.X[0]
    x = np.zeros_like(y) + x
    z = site.elevation(x, y)
    simulation_result.flow_map(XYGrid(extend=0.005)).plot_wake_map()
    plt.plot(x, y, '.')
    plt.figure()
    simulation_result.flow_map(grid=YZGrid(
        fm.x.item(), fm.y, z=np.arange(30, 210, 10))).plot_wake_map()
    plt.plot(y, z + 110, '.')
    plt.plot(y, fm.WS_eff_xylk[:, 0, 0, 0] * 100, label="ws*100")
    plt.legend()
    if 0:
        print(np.round(fm.WS_eff_xylk[:, 0, 0, 0], 2).values.tolist())
        plt.show()
    plt.close('all')
    npt.assert_array_almost_equal(fm.WS_eff_xylk[:, 0, 0, 0], [
        4.55, 3.89, 3.15, 2.31, 4.41, 4.3, 7.41, 7.2, 7.03, 7.23, 7.32, 6.77,
        6.83, 5.58, 11.01, 11.51, 11.93, 12.17, 11.03, 9.89
    ], 2)
Ejemplo n.º 7
0
def test_min_ws_eff_line():

    site = IEA37Site(16)
    x, y = [0, 600, 1200], [0, 0, 0]  # site.initial_position[:2].T
    windTurbines = IEA37_WindTurbines()
    wfm = IEA37SimpleBastankhahGaussian(
        site, windTurbines, deflectionModel=JimenezWakeDeflection())

    yaw_ilk = np.reshape([-30, 30, 0], (3, 1, 1))

    plt.figure(figsize=(14, 3))
    fm = wfm(x, y, yaw=yaw_ilk, wd=270, ws=10).flow_map(
        XYGrid(x=np.arange(-100, 2000, 10), y=np.arange(-500, 500, 10)))
    min_ws_line = fm.min_WS_eff()

    if 0:
        fm.plot_wake_map()
        min_ws_line.plot()
        print(np.round(min_ws_line[::10], 2))
        plt.show()
    npt.assert_array_almost_equal(min_ws_line[::10], [
        np.nan, np.nan, 11.6, 21.64, 30.42, 38.17, 45.09, 51.27, -8.65, -18.66,
        -27.51, -35.37, -42.38, -48.58, -1.09, -1.34, -1.59, -1.83, -2.07,
        -2.31, -2.56
    ], 2)
Ejemplo n.º 8
0
def test_fuga_wake_center_vs_notebook():

    p = Path(tfp) / "fuga/v80_wake_center_x.csv"
    x, notebook_wake_center = np.array([v.split(",") for v in p.read_text().strip().split("\n")], dtype=float).T

    powerCtFunction = PowerCtTabular([0, 100], [0, 0], 'w', [0.850877, 0.850877])
    wt = WindTurbine(name='', diameter=80, hub_height=70, powerCtFunction=powerCtFunction)

    path = tfp + 'fuga/2MW/Z0=0.00001000Zi=00400Zeta0=0.00E+00'
    site = UniformSite([1, 0, 0, 0], ti=0.075)

    wfm = PropagateDownwind(
        site,
        wt,
        wake_deficitModel=FugaYawDeficit(path),
        deflectionModel=FugaDeflection(path, 'input_par')
    )

    WS = 10
    sim_res = wfm([0], [0], yaw=[17.4493], wd=270, ws=[WS])
    y = wfm.wake_deficitModel.mirror(wfm.wake_deficitModel.y, anti_symmetric=True)
    fm = sim_res.flow_map(XYGrid(x=x[1:], y=y[240:271]))
    fuga_wake_center = [np.interp(0, InterpolatedUnivariateSpline(ws.y, ws.values).derivative()(ws.y), ws.y)
                        for ws in fm.WS_eff.squeeze().T]

    if 0:
        plt.plot(x, notebook_wake_center, label='Notebook deflection')
        plt.plot(x[1:], fuga_wake_center)
        plt.show()
    plt.close('all')
    npt.assert_allclose(fuga_wake_center, notebook_wake_center[1:], atol=.14)
Ejemplo n.º 9
0
def test_YZGrid_terrain_perpendicular():
    site = ParqueFicticioSite(distance=StraightDistance())
    x, y = site.initial_position.T
    windTurbines = IEA37_WindTurbines()

    wind_farm_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
    simulation_result = wind_farm_model(x, y, wd=270, ws=10)
    x = x.max() + 10
    fm = simulation_result.flow_map(
        grid=YZGrid(x, z=110, resolution=20, extend=0))
    y = fm.X[0]
    x = np.zeros_like(y) + x
    z = site.elevation(x, y)
    simulation_result.flow_map(XYGrid(extend=.005)).plot_wake_map()
    plt.plot(x, y, '.')
    plt.figure()
    simulation_result.flow_map(grid=YZGrid(
        fm.x.item(), y=fm.y, z=np.arange(30, 210, 10))).plot_wake_map()
    plt.plot(y, z + 110, '.')
    plt.plot(y, fm.WS_eff_xylk[:, 0, 0, 0] * 100, label="ws*100")
    plt.legend()
    if 0:
        print(np.round(fm.WS_eff_xylk[:, 0, 0, 0], 2).values.tolist())
        plt.show()
    plt.close('all')
    npt.assert_array_almost_equal(fm.WS_eff_xylk[:, 0, 0, 0], [
        5.39, 8.48, 8.42, 6.42, 5.55, 11.02, 4.99, 11.47, 5.32, 10.22, 13.39,
        8.79, 8.51, 12.4, 5.47, 10.78, 10.12, 6.54, 10.91, 7.18
    ], 2)
Ejemplo n.º 10
0
def test_blockage_map(setup, blockage_model, center_ref, side_ref):
    site, windTurbines = setup
    wm = All2AllIterative(site,
                          windTurbines,
                          wake_deficitModel=NoWakeDeficit(),
                          superpositionModel=LinearSum(),
                          blockage_deficitModel=blockage_model())

    xy = np.linspace(-200, 200, 500)
    flow_map = wm(x=[0], y=[0], wd=[270],
                  ws=[10]).flow_map(XYGrid(x=xy[::50], y=xy[[190, 250]]))
    X_j, Y_j = flow_map.XY
    WS_eff = flow_map.WS_eff_xylk[:, :, 0, 0]

    if debug:
        flow_map_full = wm(x=[0], y=[0], wd=[270], ws=[10]).flow_map()
        X_j_full, Y_j_full = flow_map_full.XY
        WS_eff_full = flow_map_full.WS_eff_xylk[:, :, 0, 0]
        plt.contourf(X_j_full, Y_j_full, WS_eff_full)
        plt.plot(X_j.T, Y_j.T, '.-')

        print(list(np.round(np.array(WS_eff[0]), 6)))
        print(list(np.round(np.array(WS_eff[1]), 6)))
        plt.title(blockage_model.__name__)
        plt.show()

    npt.assert_array_almost_equal(WS_eff[0], center_ref)
    npt.assert_array_almost_equal(WS_eff[1], side_ref)
Ejemplo n.º 11
0
 def plot(wfm, yaw, ax, min_ws):
     levels = np.arange(6.5, 10.5, .5)
     sim_res = wfm([0], [0], wd=270, ws=10, yaw=[[[yaw]]])
     fm = sim_res.flow_map(XYGrid(x=np.arange(-100, 500, 5)))
     npt.assert_almost_equal(fm.WS_eff.min(), min_ws)
     fm.plot_wake_map(ax=ax, levels=levels)
     fm.min_WS_eff(fm.x, 70).plot(ax=ax, color='r')
     plt.axhline(0, color='k')
Ejemplo n.º 12
0
def main():
    if __name__ == '__main__':
        from py_wake.examples.data.iea37 import IEA37Site, IEA37_WindTurbines
        from py_wake.deficit_models.selfsimilarity import SelfSimilarityDeficit
        from py_wake.deficit_models.gaussian import ZongGaussianDeficit
        from py_wake.turbulence_models.stf import STF2017TurbulenceModel
        from py_wake.flow_map import XYGrid
        import matplotlib.pyplot as plt

        site = IEA37Site(16)
        x, y = site.initial_position.T

        windTurbines = IEA37_WindTurbines()
        from py_wake.deficit_models.noj import NOJDeficit
        from py_wake.superposition_models import SquaredSum

        # NOJ wake model
        noj = PropagateDownwind(site,
                                windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum())

        # NOJ wake and selfsimilarity blockage
        noj_ss = All2AllIterative(
            site,
            windTurbines,
            wake_deficitModel=NOJDeficit(),
            superpositionModel=SquaredSum(),
            blockage_deficitModel=SelfSimilarityDeficit())

        # Zong convection superposition
        zongp_ss = PropagateDownwind(site,
                                     windTurbines,
                                     wake_deficitModel=ZongGaussianDeficit(),
                                     superpositionModel=WeightedSum(),
                                     turbulenceModel=STF2017TurbulenceModel())

        # Zong convection superposition
        zong_ss = All2AllIterative(
            site,
            windTurbines,
            wake_deficitModel=ZongGaussianDeficit(),
            superpositionModel=WeightedSum(),
            blockage_deficitModel=SelfSimilarityDeficit(),
            turbulenceModel=STF2017TurbulenceModel())

        for wm in [noj, noj_ss, zongp_ss, zong_ss]:
            sim = wm(x=x, y=y, wd=[30], ws=[9])
            plt.figure()
            sim.flow_map(XYGrid(resolution=200)).plot_wake_map()
            plt.title(' AEP: %.3f GWh' % sim.aep().sum())
        plt.show()
Ejemplo n.º 13
0
def test_All2AllIterativeDeflection():
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(site,
                                windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                deflectionModel=JimenezWakeDeflection())
    sim_res = wf_model([0, 500], [0, 0], wd=270, ws=10, yaw=30)
    if 0:
        sim_res.flow_map(
            XYGrid(x=np.linspace(-200, 1000, 100))).plot_wake_map()
        plt.show()
Ejemplo n.º 14
0
def test_turning_mean(complex_grid_site, wfm):

    ds = xr.Dataset(
        data_vars={'Turning': (['x', 'y'], np.arange(-2, 4, 1).reshape((2, 3)).T),
                   'Sector_frequency': ('wd', f), 'Weibull_A': ('wd', A), 'Weibull_k': ('wd', k), 'TI': .1},
        coords={'x': [0, 500, 1000], 'y': [0, 500], 'wd': np.linspace(0, 360, len(f), endpoint=False)})
    site = XRSite(ds)

    wt = V80()
    wfm = wfm(site, wt, NOJDeficit())
    sim_res = wfm([500, 500], [100, 400], wd=0, ws=10)
    print(sim_res.Power)
    if 0:
        sim_res.flow_map(XYGrid(y=np.linspace(0, 500, 100))).plot_wake_map()
        plt.show()
    assert sim_res.WS_eff.sel(wt=0).item() < sim_res.WS_eff.sel(wt=1).item()
    fm = sim_res.flow_map(Points([500, 500], [100, 400], [70, 70]))
    assert fm.WS_eff.sel(i=0).item() < fm.WS_eff.sel(i=1).item()
Ejemplo n.º 15
0
def test_deflection_model(deflectionModel, dy10d):
    site = IEA37Site(16)
    x, y = [0], [0]
    windTurbines = V80()
    D = windTurbines.diameter()
    wfm = IEA37SimpleBastankhahGaussian(site, windTurbines, deflectionModel=deflectionModel())

    yaw_ilk = np.reshape([-30], (1, 1, 1))

    sim_res = wfm(x, y, yaw=yaw_ilk, wd=270, ws=10)
    fm = sim_res.flow_map(XYGrid(x=np.arange(-D, 10 * D + 10, 10)))
    min_WS_line = fm.min_WS_eff()
    if 0:
        plt.figure(figsize=(14, 3))
        fm.plot_wake_map()
        min_WS_line.plot()
        plt.plot(10 * D, dy10d * D, '.', label="Ref, 10D")
        plt.legend()
        plt.show()

    npt.assert_almost_equal(min_WS_line.interp(x=10 * D).item() / D, dy10d)
Ejemplo n.º 16
0
def test_plot_deflection_grid(deflectionModel):
    site = IEA37Site(16)
    x, y = [0], [0]
    windTurbines = V80()
    D = windTurbines.diameter()
    wfm = IEA37SimpleBastankhahGaussian(site, windTurbines, deflectionModel=deflectionModel())

    yaw_ilk = np.reshape([-30], (1, 1, 1))

    sim_res = wfm(x, y, yaw=yaw_ilk, wd=270, ws=10)
    fm = sim_res.flow_map(XYGrid(x=np.arange(-D, 10 * D + 10, 10)))

    plt.figure(figsize=(14, 3))
    fm.plot_wake_map()
    fm.plot_deflection_grid()
    min_WS_line = fm.min_WS_eff()
    min_WS_line.plot()
    plt.legend()
    plt.title(wfm.deflectionModel)
    if 0:
        plt.show()
    plt.close('all')