Ejemplo n.º 1
0
 def pred(self, daybefore, sample_size, sign_name, cache_size=1024):
     sign_num = alphatree.getSignNum(daybefore, sample_size,
                                     c_char_p(sign_name))
     alpha_cache = (c_float * sign_num)()
     alphatree.predAlphaGBDF(daybefore, sample_size, c_char_p(sign_name),
                             alpha_cache, cache_size)
     return np.array([alpha_cache[i] for i in range(sign_num)])
Ejemplo n.º 2
0
 def get_trend(self, sign_name, elements, daybefore, sample_size, column,
               max_std_scale):
     element_cache = self.decode_features(elements)
     pic_size = (column * len(elements) * 3 * alphatree.getSignNum(
         daybefore, sample_size, c_char_p(sign_name.encode('utf-8'))))
     pic_cache = (c_float * pic_size)()
     alphatree.getTrendPic(self.picid, c_char_p(sign_name.encode('utf-8')),
                           element_cache, len(elements), daybefore,
                           sample_size, pic_cache, column,
                           c_float(max_std_scale))
     # trend = np.zeros((pic_size,))
     # for i in range(pic_size):
     #     trend[i] = pic_cache[i]
     trend = np.array(pic_cache)
     return trend.reshape([-1, column, len(elements) * 3, 1])
Ejemplo n.º 3
0
 def pred(self, sign_name, daybefore, sample_size):
     sign_num = alphatree.getSignNum(daybefore, sample_size,
                                     c_char_p(sign_name.encode()))
     alpha_cache = (c_float * sign_num)()
     min_open_value_cache = (c_float *
                             sign_num)() if self.is_open_buy else None
     max_open_value_cache = (c_float *
                             sign_num)() if self.is_open_buy else None
     alphatree.predAlphaFilter(c_char_p(sign_name.encode()), daybefore,
                               sample_size, alpha_cache,
                               min_open_value_cache, max_open_value_cache)
     #res = np.array([alpha_cache[i] for i in range(sign_num)])
     if self.is_open_buy:
         return np.array(alpha_cache), np.array(
             min_open_value_cache), np.array(max_open_value_cache)
     return np.array(alpha_cache)
Ejemplo n.º 4
0
 def get_k_line(self, sign_name, open_elements, high_elements, low_elements,
                close_elements, daybefore, sample_size, column,
                max_std_scale):
     open_cache = self.decode_features(open_elements)
     high_cache = self.decode_features(high_elements)
     low_cache = self.decode_features(low_elements)
     close_cache = self.decode_features(close_elements)
     pic_size = (column * len(open_elements) * 3 * alphatree.getSignNum(
         daybefore, sample_size, c_char_p(sign_name.encode('utf-8'))))
     pic_cache = (c_float * pic_size)()
     alphatree.getKLinePic(self.picid, c_char_p(sign_name.encode('utf-8')),
                           open_cache, high_cache, low_cache, close_cache,
                           len(open_elements), daybefore, sample_size,
                           pic_cache, column, c_float(max_std_scale))
     # kline = np.zeros((pic_size,))
     # for i in range(pic_size):
     #     kline[i] = pic_cache[i]
     kline = np.array(pic_cache)
     return kline.reshape([-1, column, len(open_elements) * 3, 1])
Ejemplo n.º 5
0
 def testRead(self,
              daybefore,
              sample_size,
              feature_num,
              target,
              sign_name,
              cache_size=2048):
     sign_num = alphatree.getSignNum(daybefore, sample_size,
                                     c_char_p(sign_name))
     target_cache = (c_float * sign_num)()
     feature_cache = (c_float * (sign_num * feature_num))()
     data_num = alphatree.testReadGBDT(daybefore, sample_size,
                                       c_char_p(target),
                                       c_char_p(sign_name), feature_cache,
                                       target_cache, cache_size)
     assert data_num == sign_num
     t = [target_cache[i] for i in range(sign_num)]
     f = []
     for i in range(sign_num):
         for j in range(feature_num):
             f.append(feature_cache[i * feature_num + j])
     #f = [[feature_cache[i * feature_num + j] for j in range(feature_num)] for i in range(sign_num)]
     return np.array(f), np.array(t)