Ejemplo n.º 1
0
    def test_solver_parameters(self):
        A = poisson((50, 50), format='csr')

        for method in methods:
            #method = ('richardson', {'omega':4.0/3.0})
            ml = smoothed_aggregation_solver(A,
                                             presmoother=method,
                                             postsmoother=method,
                                             max_coarse=10)

            residuals = profile_solver(ml)
            #print "method",method
            #print "residuals",residuals
            #print "convergence rate:",(residuals[-1]/residuals[0])**(1.0/len(residuals))
            assert ((residuals[-1] / residuals[0])**(1.0 / len(residuals)) <
                    0.95)

        for method in methods2:
            ml = smoothed_aggregation_solver(A, max_coarse=10)
            change_smoothers(ml, presmoother=method[0], postsmoother=method[1])

            residuals = profile_solver(ml)
            #print "method",method
            #print "residuals",residuals
            #print "convergence rate:",(residuals[-1]/residuals[0])**(1.0/len(residuals))
            assert ((residuals[-1] / residuals[0])**(1.0 / len(residuals)) <
                    0.95)
Ejemplo n.º 2
0
    def SetupGMG(self,
                 maxLevels=None,
                 maxCoarse=None,
                 smoother=('block_jacobi', {
                     'omega': 0.5,
                     'withrho': False
                 })):
        """ Sets up the geometric multigrid
    
        Parameters
        ----------
        maxLevels : int, optional
            Maximum levels in the hierarchy
        maxCoarse : int, optional
            Maximum nodes on the coarse grid
        smoother : tuple or list of tuple, optional
            Describes the smoothers to use on each level
    
        Returns
        -------
        it : integer
            Number of solver iterations

        """

        if maxLevels is None:
            maxLevels = self.maxLevels
        if maxCoarse is None:
            maxCoarse = self.maxCoarse

        levels = []
        levels.append(pyamg.multilevel_solver.level())
        levels[-1].A = self.K
        for P in self.P:
            levels[-1].P = P
            levels[-1].R = P.T
            levels.append(pyamg.multilevel_solver.level())
            levels[-1].A = levels[-2].R * levels[-2].A * levels[-2].P
            if (len(levels) == maxLevels
                    or levels[-1].A.shape[0] // levels[1].A.blocksize[0] <
                    maxCoarse):
                break

        self.ml_GMG = pyamg.multilevel_solver(levels, coarse_solver='splu')
        from pyamg.relaxation.smoothing import change_smoothers
        change_smoothers(self.ml_GMG,
                         presmoother=smoother,
                         postsmoother=smoother)
Ejemplo n.º 3
0
def load(file):
    """
    Deserialize a file containing various numpy matrices to
    a PyAMG multigrid solver.

    :param file:
    """

    class level:

        def __init__(self):
            pass


    def load_level(item):

        l = level()
        for key, value in item.iteritems():

            if key == 'presmoother':
                continue

            if type(value) is np.ndarray:
                arr = value
            else:
                matrix_func_name = "%s_matrix" % value["format"]
                matrix_func = getattr(sparse, matrix_func_name)
                arr = matrix_func((
                    value["data"],
                    value["indices"],
                    value["indptr"]),
                    shape=value["shape"]
                )

            setattr(l, key, arr)

        return l

    data = np.load(file)
    levels = map(load_level, data["levels"])

    ml = pyamg.multilevel.multilevel_solver(levels, coarse_solver='pinv2')
    change_smoothers(ml, 'gauss_seidel', 'gauss_seidel')

    return ml
Ejemplo n.º 4
0
    def test_solver_parameters(self):
        A = poisson((50, 50), format='csr')

        for method in methods:
            # method = ('richardson', {'omega':4.0/3.0})
            ml = smoothed_aggregation_solver(A, presmoother=method,
                                             postsmoother=method,
                                             max_coarse=10)

            residuals = profile_solver(ml)
            assert((residuals[-1]/residuals[0])**(1.0/len(residuals)) < 0.95)

        for method in methods2:
            ml = smoothed_aggregation_solver(A, max_coarse=10)
            change_smoothers(ml, presmoother=method[0], postsmoother=method[1])

            residuals = profile_solver(ml)
            assert((residuals[-1]/residuals[0])**(1.0/len(residuals)) < 0.95)
Ejemplo n.º 5
0
    def test_solver_parameters(self):
        A = poisson((50, 50), format='csr')

        for method in methods:
            # method = ('richardson', {'omega':4.0/3.0})
            ml = smoothed_aggregation_solver(A,
                                             presmoother=method,
                                             postsmoother=method,
                                             max_coarse=10)

            residuals = profile_solver(ml)
            assert ((residuals[-1] / residuals[0])**(1.0 / len(residuals)) <
                    0.95)
            assert (ml.symmetric_smoothing)

        for method in methods2:
            ml = smoothed_aggregation_solver(A, max_coarse=10)
            change_smoothers(ml, presmoother=method[0], postsmoother=method[1])

            residuals = profile_solver(ml)
            assert ((residuals[-1] / residuals[0])**(1.0 / len(residuals)) <
                    0.95)
            assert (not ml.symmetric_smoothing)

        for method in methods3:
            ml = smoothed_aggregation_solver(A, max_coarse=10)
            change_smoothers(ml, presmoother=method[0], postsmoother=method[1])
            assert (ml.symmetric_smoothing)

        for method in methods4:
            ml = smoothed_aggregation_solver(A, max_coarse=10)
            change_smoothers(ml, presmoother=method[0], postsmoother=method[1])
            assert (not ml.symmetric_smoothing)
Ejemplo n.º 6
0
    def test_cycle_complexity(self):
        # four levels
        levels = []
        levels.append(multilevel_solver.level())
        levels[0].A = csr_matrix(ones((10, 10)))
        levels[0].P = csr_matrix(ones((10, 5)))
        levels.append(multilevel_solver.level())
        levels[1].A = csr_matrix(ones((5, 5)))
        levels[1].P = csr_matrix(ones((5, 3)))
        levels.append(multilevel_solver.level())
        levels[2].A = csr_matrix(ones((3, 3)))
        levels[2].P = csr_matrix(ones((3, 2)))
        levels.append(multilevel_solver.level())
        levels[3].A = csr_matrix(ones((2, 2)))

        # one level hierarchy
        mg = multilevel_solver(levels[:1])
        assert_equal(mg.cycle_complexity(cycle='V'), 100.0 / 100.0)  # 1
        assert_equal(mg.cycle_complexity(cycle='W'), 100.0 / 100.0)  # 1
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 100.0 / 100.0)  # 1
        assert_equal(mg.cycle_complexity(cycle='F'), 100.0 / 100.0)  # 1

        # two level hierarchy
        mg = multilevel_solver(levels[:2])
        change_smoothers(mg, 'gauss_seidel', 'gauss_seidel')
        assert_equal(mg.cycle_complexity(cycle='V'), 4.0)
        assert_equal(mg.cycle_complexity(cycle='W'), 4.0)
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 4.0)
        assert_equal(mg.cycle_complexity(cycle='F'), 4.0)

        # three level hierarchy
        mg = multilevel_solver(levels[:3])
        change_smoothers(mg, ('gauss_seidel', {
            'iterations': 2
        }), 'gauss_seidel')
        assert_equal(mg.cycle_complexity(cycle='V'), 6.3)
        assert_equal(mg.cycle_complexity(cycle='W'), 7.6)
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 7.6)
        assert_equal(mg.cycle_complexity(cycle='F'), 7.6)

        # four level hierarchy
        mg = multilevel_solver(levels[:4])
        change_smoothers(mg, ('gauss_seidel', {
            'sweep': 'symmetric'
        }), 'gauss_seidel')
        assert_equal(mg.cycle_complexity(cycle='V'), 6.78)
        assert_equal(mg.cycle_complexity(cycle='W'), 9.52)
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 9.52)
        assert_equal(mg.cycle_complexity(cycle='F'), 9.04)
Ejemplo n.º 7
0
    def test_cycle_complexity(self):
        # four levels
        levels = []
        levels.append(multilevel_solver.level())
        levels[0].A = csr_matrix(ones((10, 10)))
        levels[0].P = csr_matrix(ones((10, 5)))
        levels.append(multilevel_solver.level())
        levels[1].A = csr_matrix(ones((5, 5)))
        levels[1].P = csr_matrix(ones((5, 3)))
        levels.append(multilevel_solver.level())
        levels[2].A = csr_matrix(ones((3, 3)))
        levels[2].P = csr_matrix(ones((3, 2)))
        levels.append(multilevel_solver.level())
        levels[3].A = csr_matrix(ones((2, 2)))

        # one level hierarchy
        mg = multilevel_solver(levels[:1])
        assert_equal(mg.cycle_complexity(cycle='V'), 100.0/100.0)  # 1
        assert_equal(mg.cycle_complexity(cycle='W'), 100.0/100.0)  # 1
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 100.0/100.0)  # 1
        assert_equal(mg.cycle_complexity(cycle='F'), 100.0/100.0)  # 1

        # two level hierarchy
        mg = multilevel_solver(levels[:2])
        change_smoothers(mg, 'gauss_seidel', 'gauss_seidel')
        assert_equal(mg.cycle_complexity(cycle='V'), 4.0)
        assert_equal(mg.cycle_complexity(cycle='W'), 4.0)
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 4.0)
        assert_equal(mg.cycle_complexity(cycle='F'), 4.0)

        # three level hierarchy
        mg = multilevel_solver(levels[:3])
        change_smoothers(mg, ('gauss_seidel', {'iterations':2}) , 'gauss_seidel')
        assert_equal(mg.cycle_complexity(cycle='V'), 6.3)
        assert_equal(mg.cycle_complexity(cycle='W'), 7.6)
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 7.6)
        assert_equal(mg.cycle_complexity(cycle='F'), 7.6)

        # four level hierarchy
        mg = multilevel_solver(levels[:4])
        change_smoothers(mg, ('gauss_seidel', {'sweep':'symmetric'}), 'gauss_seidel')
        assert_equal(mg.cycle_complexity(cycle='V'), 6.78)
        assert_equal(mg.cycle_complexity(cycle='W'), 9.52)
        assert_equal(mg.cycle_complexity(cycle='AMLI'), 9.52)
        assert_equal(mg.cycle_complexity(cycle='F'), 9.04)
Ejemplo n.º 8
0
def ruge_stuben_solver(A,
                       strength=('classical', {
                           'theta': 0.25
                       }),
                       CF='RS',
                       presmoother=('gauss_seidel', {
                           'sweep': 'symmetric'
                       }),
                       postsmoother=('gauss_seidel', {
                           'sweep': 'symmetric'
                       }),
                       max_levels=10,
                       max_coarse=500,
                       keep=False,
                       **kwargs):
    """Create a multilevel solver using Classical AMG (Ruge-Stuben AMG)

    Parameters
    ----------
    A : csr_matrix
        Square matrix in CSR format
    strength : ['symmetric', 'classical', 'evolution', None]
        Method used to determine the strength of connection between unknowns
        of the linear system.  Method-specific parameters may be passed in
        using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
        strength=None, all nonzero entries of the matrix are considered strong.
    CF : {string} : default 'RS'
        Method used for coarse grid selection (C/F splitting)
        Supported methods are RS, PMIS, PMISc, CLJP, and CLJPc
    presmoother : {string or dict}
        Method used for presmoothing at each level.  Method-specific parameters
        may be passed in using a tuple, e.g.
        presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
    postsmoother : {string or dict}
        Postsmoothing method with the same usage as presmoother
    max_levels: {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse: {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C) and
        tentative prolongation (T) are kept.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    Examples
    --------
    >>> from pyamg.gallery import poisson
    >>> from pyamg import ruge_stuben_solver
    >>> A = poisson((10,),format='csr')
    >>> ml = ruge_stuben_solver(A,max_coarse=3)

    Notes
    -----

    "coarse_solver" is an optional argument and is the solver used at the
    coarsest grid.  The default is a pseudo-inverse.  Most simply,
    coarse_solver can be one of ['splu', 'lu', 'cholesky, 'pinv',
    'gauss_seidel', ... ].  Additionally, coarse_solver may be a tuple
    (fn, args), where fn is a string such as ['splu', 'lu', ...] or a callable
    function, and args is a dictionary of arguments to be passed to fn.


    References
    ----------
    .. [1] Trottenberg, U., Oosterlee, C. W., and Schuller, A.,
       "Multigrid" San Diego: Academic Press, 2001.  Appendix A

    See Also
    --------
    aggregation.smoothed_aggregation_solver, multilevel_solver,
    aggregation.rootnode_solver

    """

    levels = [multilevel_solver.level()]

    # convert A to csr
    if not isspmatrix_csr(A):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix, \
                             or be convertible to csr_matrix')
    # preprocess A
    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    levels[-1].A = A

    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        extend_hierarchy(levels, strength, CF, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 9
0
    def SetupHybrid(self,
                    maxLevels=None,
                    maxCoarse=None,
                    smoother=('block_jacobi', {
                        'omega': 0.5,
                        'withrho': False
                    }),
                    nG=1):
        """ Sets up the hybrid multigrid
    
        Parameters
        ----------
        maxLevels : int, optional
            Maximum levels in the hierarchy
        maxCoarse : int, optional
            Maximum nodes on the coarse grid
        smoother : tuple or list of tuple, optional
            Describes the smoothers to use on each level
        nG : int, optional
            Number of levels of geometric coarsening to use
    
        Returns
        -------
        it : integer
            Number of solver iterations

        """
        if maxLevels is None:
            maxLevels = self.maxLevels
        if maxCoarse is None:
            maxCoarse = self.maxCoarse

        if self.nDof == 1:
            Nullspace = np.ones((self.nodes.shape[0], 1))
        elif self.nDof == 2:
            Nullspace = np.zeros((self.nodes.size, 3))
            Nullspace[::2, 0] = 1
            Nullspace[1::2, 1] = 1
            Nullspace[::2, 2] = -self.nodes[:, 1]
            Nullspace[1::2, 2] = self.nodes[:, 0]
        elif self.nDof == 3:
            Nullspace = np.zeros((self.nodes.size, 6))
            Nullspace[::3, 0] = 1
            Nullspace[1::3, 1] = 1
            Nullspace[2::3, 2] = 1
            Nullspace[::3, 3] = -self.nodes[:, 1]
            Nullspace[1::3, 3] = self.nodes[:, 0]
            Nullspace[1::3, 4] = -self.nodes[:, 2]
            Nullspace[2::3, 4] = self.nodes[:, 1]
            Nullspace[0::3, 5] = -self.nodes[:, 2]
            Nullspace[2::3, 5] = self.nodes[:, 0]

        levels = []
        A = self.K
        for i in range(nG):
            levels.append(pyamg.multilevel_solver.level())
            levels[-1].A = A
            levels[-1].P = self.P[i]
            levels[-1].R = self.P[i].T
            A = levels[-1].R * A * levels[-1].P

        if nG > 0:
            cDof = (self.nDof * self.cNodes[nG - 1].reshape(-1, 1) +
                    np.arange(self.nDof).reshape(1, -1)).ravel()
            Nullspace = Nullspace[cDof]
        Nullspace = np.linalg.solve(
            np.linalg.cholesky(np.dot(Nullspace.T, Nullspace)), Nullspace.T).T

        AMG = pyamg.smoothed_aggregation_solver(A,
                                                B=Nullspace,
                                                max_coarse=maxCoarse,
                                                max_levels=maxLevels - nG + 1,
                                                strength=('symmetric', {
                                                    'theta': 0.003
                                                }),
                                                smooth=('jacobi', {
                                                    'omega':
                                                    4.0 / 3.0,
                                                    'spectral_radius':
                                                    self.nDof
                                                }),
                                                keep=True)

        levels += AMG.levels
        self.ml_HYBRID = pyamg.multilevel_solver(levels, coarse_solver='splu')
        from pyamg.relaxation.smoothing import change_smoothers
        change_smoothers(self.ml_HYBRID,
                         presmoother=smoother,
                         postsmoother=smoother)
Ejemplo n.º 10
0
def general_setup_stage(ml, symmetry, candidate_iters, prepostsmoother, smooth,
                        eliminate_local, coarse_solver, work):
    """
    Computes additional candidates and improvements
    following Algorithm 4 in Brezina et al.

    Parameters
    ----------
    candidate_iters
        number of test relaxation iterations
    epsilon
        minimum acceptable relaxation convergence factor

    References
    ----------
    .. [1] Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge
       "Adaptive Smoothed Aggregation (alphaSA) Multigrid"
       SIAM Review Volume 47,  Issue 2  (2005)
       http://www.cs.umn.edu/~maclach/research/aSA2.pdf
    """
    def make_bridge(T):
        M, N = T.shape
        K = T.blocksize[0]
        bnnz = T.indptr[-1]
        # the K+1 represents the new dof introduced by the new candidate.  the
        # bridge 'T' ignores this new dof and just maps zeros there
        data = np.zeros((bnnz, K + 1, K), dtype=T.dtype)
        data[:, :-1, :] = T.data
        return bsr_matrix((data, T.indices, T.indptr),
                          shape=((K + 1) * int(M / K), N))

    def expand_candidates(B_old, nodesize):
        # insert a new dof that is always zero, to create NullDim+1 dofs per
        # node in B
        NullDim = B_old.shape[1]
        nnodes = int(B_old.shape[0] / nodesize)
        Bnew = np.zeros((nnodes, nodesize + 1, NullDim), dtype=B_old.dtype)
        Bnew[:, :-1, :] = B_old.reshape(nnodes, nodesize, NullDim)
        return Bnew.reshape(-1, NullDim)

    levels = ml.levels

    x = sp.rand(levels[0].A.shape[0], 1)
    if levels[0].A.dtype.name.startswith('complex'):
        x = x + 1.0j * sp.rand(levels[0].A.shape[0], 1)
    b = np.zeros_like(x)

    x = ml.solve(b,
                 x0=x,
                 tol=float(np.finfo(np.float).tiny),
                 maxiter=candidate_iters)
    work[:] += ml.operator_complexity(
    ) * ml.levels[0].A.nnz * candidate_iters * 2

    T0 = levels[0].T.copy()

    # TEST FOR CONVERGENCE HERE

    for i in range(len(ml.levels) - 2):
        # alpha-SA paper does local elimination here, but after talking
        # to Marian, its not clear that this helps things
        # fn, kwargs = unpack_arg(eliminate_local)
        # if fn == True:
        #    eliminate_local_candidates(x,levels[i].AggOp,levels[i].A,
        #    levels[i].T, **kwargs)

        # add candidate to B
        B = np.hstack((levels[i].B, x.reshape(-1, 1)))

        # construct Ptent
        T, R = fit_candidates(levels[i].AggOp, B)

        levels[i].T = T
        x = R[:, -1].reshape(-1, 1)

        # smooth P
        fn, kwargs = unpack_arg(smooth[i])
        if fn == 'jacobi':
            levels[i].P = jacobi_prolongation_smoother(levels[i].A, T,
                                                       levels[i].C, R,
                                                       **kwargs)
        elif fn == 'richardson':
            levels[i].P = richardson_prolongation_smoother(
                levels[i].A, T, **kwargs)
        elif fn == 'energy':
            levels[i].P = energy_prolongation_smoother(levels[i].A, T,
                                                       levels[i].C, R, None,
                                                       (False, {}), **kwargs)
            x = R[:, -1].reshape(-1, 1)
        elif fn is None:
            levels[i].P = T
        else:
            raise ValueError('unrecognized prolongation smoother method %s' %
                             str(fn))

        # construct R
        if symmetry == 'symmetric':  # R should reflect A's structure
            levels[i].R = levels[i].P.T.asformat(levels[i].P.format)
        elif symmetry == 'hermitian':
            levels[i].R = levels[i].P.H.asformat(levels[i].P.format)

        # construct coarse A
        levels[i + 1].A = levels[i].R * levels[i].A * levels[i].P

        # construct bridging P
        T_bridge = make_bridge(levels[i + 1].T)
        R_bridge = levels[i + 2].B

        # smooth bridging P
        fn, kwargs = unpack_arg(smooth[i + 1])
        if fn == 'jacobi':
            levels[i + 1].P = jacobi_prolongation_smoother(
                levels[i + 1].A, T_bridge, levels[i + 1].C, R_bridge, **kwargs)
        elif fn == 'richardson':
            levels[i + 1].P = richardson_prolongation_smoother(
                levels[i + 1].A, T_bridge, **kwargs)
        elif fn == 'energy':
            levels[i + 1].P = energy_prolongation_smoother(
                levels[i + 1].A, T_bridge, levels[i + 1].C, R_bridge, None,
                (False, {}), **kwargs)
        elif fn is None:
            levels[i + 1].P = T_bridge
        else:
            raise ValueError('unrecognized prolongation smoother method %s' %
                             str(fn))

        # construct the "bridging" R
        if symmetry == 'symmetric':  # R should reflect A's structure
            levels[i + 1].R = levels[i + 1].P.T.asformat(levels[i +
                                                                1].P.format)
        elif symmetry == 'hermitian':
            levels[i + 1].R = levels[i + 1].P.H.asformat(levels[i +
                                                                1].P.format)

        # run solver on candidate
        solver = multilevel_solver(levels[i + 1:], coarse_solver=coarse_solver)
        change_smoothers(solver,
                         presmoother=prepostsmoother,
                         postsmoother=prepostsmoother)
        x = solver.solve(np.zeros_like(x),
                         x0=x,
                         tol=float(np.finfo(np.float).tiny),
                         maxiter=candidate_iters)
        work[:] += 2 * solver.operator_complexity() * solver.levels[0].A.nnz *\
            candidate_iters*2

        # update values on next level
        levels[i + 1].B = R[:, :-1].copy()
        levels[i + 1].T = T_bridge

    # note that we only use the x from the second coarsest level
    fn, kwargs = unpack_arg(prepostsmoother)
    for lvl in reversed(levels[:-2]):
        x = lvl.P * x
        work[:] += lvl.A.nnz * candidate_iters * 2

        if fn == 'gauss_seidel':
            # only relax at nonzeros, so as not to mess up any locally dropped
            # candidates
            indices = np.ravel(x).nonzero()[0]
            gauss_seidel_indexed(lvl.A,
                                 x,
                                 np.zeros_like(x),
                                 indices,
                                 iterations=candidate_iters,
                                 sweep='symmetric')

        elif fn == 'gauss_seidel_ne':
            gauss_seidel_ne(lvl.A,
                            x,
                            np.zeros_like(x),
                            iterations=candidate_iters,
                            sweep='symmetric')

        elif fn == 'gauss_seidel_nr':
            gauss_seidel_nr(lvl.A,
                            x,
                            np.zeros_like(x),
                            iterations=candidate_iters,
                            sweep='symmetric')

        elif fn == 'jacobi':
            jacobi(lvl.A,
                   x,
                   np.zeros_like(x),
                   iterations=1,
                   omega=1.0 / rho_D_inv_A(lvl.A))

        elif fn == 'richardson':
            polynomial(lvl.A,
                       x,
                       np.zeros_like(x),
                       iterations=1,
                       coefficients=[1.0 / approximate_spectral_radius(lvl.A)])

        elif fn == 'gmres':
            x[:] = (gmres(lvl.A,
                          np.zeros_like(x),
                          x0=x,
                          maxiter=candidate_iters)[0]).reshape(x.shape)
        else:
            raise TypeError('Unrecognized smoother')

    # x will be dense again, so we have to drop locally again
    elim, elim_kwargs = unpack_arg(eliminate_local)
    if elim is True:
        x = x / norm(x, 'inf')
        eliminate_local_candidates(x, levels[0].AggOp, levels[0].A, T0,
                                   **elim_kwargs)

    return x.reshape(-1, 1)
Ejemplo n.º 11
0
def smoothed_aggregation_solver(A,
                                B=None,
                                BH=None,
                                symmetry='hermitian',
                                strength='symmetric',
                                aggregate='standard',
                                smooth=('jacobi', {
                                    'omega': 4.0 / 3.0
                                }),
                                presmoother=('block_gauss_seidel', {
                                    'sweep': 'symmetric'
                                }),
                                postsmoother=('block_gauss_seidel', {
                                    'sweep': 'symmetric'
                                }),
                                improve_candidates=[('block_gauss_seidel', {
                                    'sweep': 'symmetric',
                                    'iterations': 4
                                }), None],
                                max_levels=10,
                                max_coarse=10,
                                diagonal_dominance=False,
                                keep=False,
                                **kwargs):
    """Create a multilevel solver using classical-style Smoothed Aggregation (SA).

    Parameters
    ----------
    A : csr_matrix, bsr_matrix
        Sparse NxN matrix in CSR or BSR format

    B : None, array_like
        Right near-nullspace candidates stored in the columns of an NxK array.
        The default value B=None is equivalent to B=ones((N,1))

    BH : None, array_like
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.
        The default value B=None is equivalent to BH=B.copy()

    symmetry : string
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note, in the strictly real case, symmetric and hermitian are the same.
        Note, this flag does not denote definiteness of the operator.

    strength : string or list
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.
        Choose from 'symmetric', 'classical', 'evolution', 'algebraic_distance',
        'affinity', ('predefined', {'C' : csr_matrix}), None

    aggregate : string or list
        Method used to aggregate nodes.
        Choose from 'standard', 'lloyd', 'naive',
        ('predefined', {'AggOp' : csr_matrix})

    smooth : list
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).
        Choose from 'jacobi', 'richardson', 'energy', None

    presmoother : tuple, string, list
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.

    postsmoother : tuple, string, list
        Same as presmoother, except defines the postsmoother.

    improve_candidates : tuple, string, list
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.

    max_levels : integer
        Maximum number of levels to be used in the multilevel solver.

    max_coarse : integer
        Maximum number of variables permitted on the coarse grid.

    diagonal_dominance : bool, tuple
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.

    keep : bool
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), and aggregation (AggOp) are kept.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle

    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
        Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, classical.ruge_stuben_solver,
    aggregation.smoothed_aggregation_solver

    Notes
    -----
        - This method implements classical-style SA, not root-node style SA
          (see aggregation.rootnode_solver).

        - The additional parameters are passed through as arguments to
          multilevel_solver.  Refer to pyamg.multilevel_solver for additional
          documentation.

        - At each level, four steps are executed in order to define the coarser
          level operator.

          1. Matrix A is given and used to derive a strength matrix, C.

          2. Based on the strength matrix, indices are grouped or aggregated.

          3. The aggregates define coarse nodes and a tentative prolongation
             operator T is defined by injection

          4. The tentative prolongation operator is smoothed by a relaxation
             scheme to improve the quality and extent of interpolation from the
             aggregates to fine nodes.

        - The parameters smooth, strength, aggregate, presmoother, postsmoother
          can be varied on a per level basis.  For different methods on
          different levels, use a list as input so that the i-th entry defines
          the method at the i-th level.  If there are more levels in the
          hierarchy than list entries, the last entry will define the method
          for all levels lower.

          Examples are:
          smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
          presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
          aggregate=['standard', 'naive']
          strength=[('symmetric', {'theta':0.25}), ('symmetric', {'theta':0.08})]

        - Predefined strength of connection and aggregation schemes can be
          specified.  These options are best used together, but aggregation can
          be predefined while strength of connection is not.

          For predefined strength of connection, use a list consisting of
          tuples of the form ('predefined', {'C' : C0}), where C0 is a
          csr_matrix and each degree-of-freedom in C0 represents a supernode.
          For instance to predefine a three-level hierarchy, use
          [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

          Similarly for predefined aggregation, use a list of tuples.  For
          instance to predefine a three-level hierarchy, use [('predefined',
          {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
          dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
          A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
          csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                      # RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1996VaMaBr] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except BaseException:
            raise TypeError(
                'Argument A must have type csr_matrix or bsr_matrix, or be convertible to csr_matrix'
            )

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and\
            (symmetry != 'nonsymmetric'):
        raise ValueError(
            'expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter '
        )
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(
            np.ones((int(A.shape[0] / blocksize(A)), 1), dtype=A.dtype),
            np.eye(blocksize(A), dtype=A.dtype))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError(
                'The near null-space modes B have incorrect dimensions for matrix A'
            )
        if B.shape[1] < blocksize(A):
            warn(
                'Having less target vectors, B.shape[1], than blocksize of A can degrade convergence factors.'
            )

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError(
                    'The number of left and right near null-space modes B and BH, must be equal'
                )
            if BH.shape[0] != A.shape[0]:
                raise ValueError(
                    'The near null-space modes BH have incorrect dimensions for matrix A'
                )

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A  # matrix

    # Append near nullspace candidates
    levels[-1].B = B  # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH  # left candidates

    while len(levels) < max_levels and\
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 12
0
def AIR_solver(A,
               strength=('classical', {'theta': 0.3 ,'norm': 'min'}),
               CF='RS',
               interp='one_point',
               restrict='neumann',
               presmoother=None,
               postsmoother=('FC_jacobi', {'omega': 1.0, 'iterations': 1,
                              'withrho': False,  'F_iterations': 2,
                              'C_iterations': 0} ),
               filter_operator=None,
               coarse_grid_P=None, 
               coarse_grid_R=None, 
               max_levels=20, max_coarse=20,
               keep=False, **kwargs):
    """Create a multilevel solver using Classical AMG (Ruge-Stuben AMG)

    Parameters
    ----------
    A : csr_matrix
        Square nonsymmetric matrix in CSR format
    strength : ['symmetric', 'classical', 'evolution', 'distance',
                'algebraic_distance','affinity', 'energy_based', None]
        Method used to determine the strength of connection between unknowns
        of the linear system.  Method-specific parameters may be passed in
        using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
        strength=None, all nonzero entries of the matrix are considered strong.
    CF : {string} : default 'RS'
        Method used for coarse grid selection (C/F splitting)
        Supported methods are RS, PMIS, PMISc, CLJP, CLJPc, and CR.
    interp : {string} : default 'one-point'
        Options include 'direct', 'standard', 'inject' and 'one-point'.
    restrict : {string} : default 'neumann'
        Options include 'air' for approximate ideal
        restriction.
    presmoother : {string or dict} : default None
        Method used for presmoothing at each level.  Method-specific parameters
        may be passed in using a tuple, e.g.
        presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
    postsmoother : {string or dict} : default F-Jacobi
        Postsmoothing method with the same usage as presmoother
    filter_operator : (bool, tol) : default None
        Remove small entries in operators on each level if True. Entries are
        considered "small" if |a_ij| < tol |a_ii|.
    coarse_grid_P : {string} : default None
        Option to specify a different construction of P used in computing RAP
        vs. for interpolation in an actual solve.
    max_levels: {integer} : default 20
        Maximum number of levels to be used in the multilevel solver.
    max_coarse: {integer} : default 20
        Maximum number of variables permitted on the coarse grid.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C) and
        tentative prolongation (T) are kept.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    Other Parameters
    ----------------
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Notes
    -----




    References
    ----------
    .. [1] 

    See Also
    --------
    aggregation.smoothed_aggregation_solver, multilevel_solver,
    aggregation.rootnode_solver

    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    # preprocess A
    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    levels = [multilevel_solver.level()]
    levels[-1].A = A

    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        bottom = extend_hierarchy(levels, strength, CF, interp, restrict, filter_operator,
                                  coarse_grid_P, coarse_grid_R, keep)
        if bottom:
            break

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 13
0
def AIR_solver(A,
               strength=('classical', {
                   'theta': 0.3,
                   'norm': 'min'
               }),
               CF='RS',
               interp='one_point',
               restrict='neumann',
               presmoother=None,
               postsmoother=('FC_jacobi', {
                   'omega': 1.0,
                   'iterations': 1,
                   'withrho': False,
                   'F_iterations': 2,
                   'C_iterations': 0
               }),
               filter_operator=None,
               coarse_grid_P=None,
               coarse_grid_R=None,
               max_levels=20,
               max_coarse=20,
               keep=False,
               **kwargs):
    """Create a multilevel solver using Classical AMG (Ruge-Stuben AMG)

    Parameters
    ----------
    A : csr_matrix
        Square nonsymmetric matrix in CSR format
    strength : ['symmetric', 'classical', 'evolution', 'distance',
                'algebraic_distance','affinity', 'energy_based', None]
        Method used to determine the strength of connection between unknowns
        of the linear system.  Method-specific parameters may be passed in
        using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
        strength=None, all nonzero entries of the matrix are considered strong.
    CF : {string} : default 'RS'
        Method used for coarse grid selection (C/F splitting)
        Supported methods are RS, PMIS, PMISc, CLJP, CLJPc, and CR.
    interp : {string} : default 'one-point'
        Options include 'direct', 'standard', 'inject' and 'one-point'.
    restrict : {string} : default 'neumann'
        Options include 'air' for approximate ideal
        restriction.
    presmoother : {string or dict} : default None
        Method used for presmoothing at each level.  Method-specific parameters
        may be passed in using a tuple, e.g.
        presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
    postsmoother : {string or dict} : default F-Jacobi
        Postsmoothing method with the same usage as presmoother
    filter_operator : (bool, tol) : default None
        Remove small entries in operators on each level if True. Entries are
        considered "small" if |a_ij| < tol |a_ii|.
    coarse_grid_P : {string} : default None
        Option to specify a different construction of P used in computing RAP
        vs. for interpolation in an actual solve.
    max_levels: {integer} : default 20
        Maximum number of levels to be used in the multilevel solver.
    max_coarse: {integer} : default 20
        Maximum number of variables permitted on the coarse grid.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C) and
        tentative prolongation (T) are kept.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    Other Parameters
    ----------------
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Notes
    -----




    References
    ----------
    .. [1] 

    See Also
    --------
    aggregation.smoothed_aggregation_solver, multilevel_solver,
    aggregation.rootnode_solver

    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    # preprocess A
    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    levels = [multilevel_solver.level()]
    levels[-1].A = A

    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        bottom = extend_hierarchy(levels, strength, CF, interp, restrict,
                                  filter_operator, coarse_grid_P,
                                  coarse_grid_R, keep)
        if bottom:
            break

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 14
0
def ruge_stuben_solver(A,
                       strength=('classical', {'theta': 0.25}),
                       CF='RS',
                       interpolation='direct',
                       restriction='galerkin',
                       presmoother=('gauss_seidel', {'sweep': 'symmetric'}),
                       postsmoother=('gauss_seidel', {'sweep': 'symmetric'}),
                       max_levels=10, max_coarse=10, keep=False, **kwargs):
    """Create a multilevel solver using Classical AMG (Ruge-Stuben AMG)

    Parameters
    ----------
    A : csr_matrix
        Square matrix in CSR format
    strength : ['symmetric', 'classical', 'evolution', 'distance',
                'algebraic_distance','affinity', 'energy_based', None]
        Method used to determine the strength of connection between unknowns
        of the linear system.  Method-specific parameters may be passed in
        using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
        strength=None, all nonzero entries of the matrix are considered strong.
    CF : {string} : default 'RS'
        Method used for coarse grid selection (C/F splitting)
        Supported methods are RS, PMIS, PMISc, CLJP, CLJPc, and CR.
    interpolation : {string} : default 'direct'
        Method for interpolation. Options include 'direct', 'standard', 'injection',
        'one_point', and 'distance_two'.
    restriction : {string or dict} : default 'galerkin'
        'Galerkin' means set R := P^T for a Galerkin coarse-grid operator. Can also specify
        an interpolation method as above, to build the restriciton operator based on A^T. 
    presmoother : {string or dict}
        Method used for presmoothing at each level.  Method-specific parameters
        may be passed in using a tuple, e.g.
        presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
    postsmoother : {string or dict}
        Postsmoothing method with the same usage as presmoother
    max_levels: {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse: {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C) and
        tentative prolongation (T) are kept.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Examples
    --------
    >>> from pyamg.gallery import poisson
    >>> from pyamg import ruge_stuben_solver
    >>> A = poisson((10,),format='csr')
    >>> ml = ruge_stuben_solver(A,max_coarse=3)

    Notes
    -----

    Standard interpolation is generally considered more robust than
    direct, but direct is the currently the default until our new 
    implementation of standard has been more rigorously tested.

    "coarse_solver" is an optional argument and is the solver used at the
    coarsest grid.  The default is a pseudo-inverse.  Most simply,
    coarse_solver can be one of ['splu', 'lu', 'cholesky, 'pinv',
    'gauss_seidel', ... ].  Additionally, coarse_solver may be a tuple
    (fn, args), where fn is a string such as ['splu', 'lu', ...] or a callable
    function, and args is a dictionary of arguments to be passed to fn.


    References
    ----------
    .. [1] Trottenberg, U., Oosterlee, C. W., and Schuller, A.,
       "Multigrid" San Diego: Academic Press, 2001.  Appendix A

    See Also
    --------
    aggregation.smoothed_aggregation_solver, multilevel_solver,
    aggregation.rootnode_solver

    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    # Convert A to csr
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix, bsr_matrix, \
                             or be convertible to csr_matrix')
    
    # if isspmatrix_bsr(A):
    #     warn("Classical AMG is often more effective on CSR matrices.")

    # preprocess A
    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    levels = [multilevel_solver.level()]
    levels[-1].A = A

    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        extend_hierarchy(levels, strength, CF, interpolation, restriction, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 15
0
def ruge_stuben_solver(A,
                       strength=('classical', {
                           'theta': 0.25
                       }),
                       CF='RS',
                       interpolation='direct',
                       restriction='galerkin',
                       presmoother=('gauss_seidel', {
                           'sweep': 'symmetric'
                       }),
                       postsmoother=('gauss_seidel', {
                           'sweep': 'symmetric'
                       }),
                       max_levels=10,
                       max_coarse=10,
                       keep=False,
                       **kwargs):
    """Create a multilevel solver using Classical AMG (Ruge-Stuben AMG)

    Parameters
    ----------
    A : csr_matrix
        Square matrix in CSR format
    strength : ['symmetric', 'classical', 'evolution', 'distance',
                'algebraic_distance','affinity', 'energy_based', None]
        Method used to determine the strength of connection between unknowns
        of the linear system.  Method-specific parameters may be passed in
        using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
        strength=None, all nonzero entries of the matrix are considered strong.
    CF : {string} : default 'RS'
        Method used for coarse grid selection (C/F splitting)
        Supported methods are RS, PMIS, PMISc, CLJP, CLJPc, and CR.
    interpolation : {string} : default 'direct'
        Method for interpolation. Options include 'direct', 'standard', 'injection',
        'one_point', and 'distance_two'.
    restriction : {string or dict} : default 'galerkin'
        'Galerkin' means set R := P^T for a Galerkin coarse-grid operator. Can also specify
        an interpolation method as above, to build the restriciton operator based on A^T. 
    presmoother : {string or dict}
        Method used for presmoothing at each level.  Method-specific parameters
        may be passed in using a tuple, e.g.
        presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
    postsmoother : {string or dict}
        Postsmoothing method with the same usage as presmoother
    max_levels: {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse: {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C) and
        tentative prolongation (T) are kept.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Examples
    --------
    >>> from pyamg.gallery import poisson
    >>> from pyamg import ruge_stuben_solver
    >>> A = poisson((10,),format='csr')
    >>> ml = ruge_stuben_solver(A,max_coarse=3)

    Notes
    -----

    Standard interpolation is generally considered more robust than
    direct, but direct is the currently the default until our new 
    implementation of standard has been more rigorously tested.

    "coarse_solver" is an optional argument and is the solver used at the
    coarsest grid.  The default is a pseudo-inverse.  Most simply,
    coarse_solver can be one of ['splu', 'lu', 'cholesky, 'pinv',
    'gauss_seidel', ... ].  Additionally, coarse_solver may be a tuple
    (fn, args), where fn is a string such as ['splu', 'lu', ...] or a callable
    function, and args is a dictionary of arguments to be passed to fn.


    References
    ----------
    .. [1] Trottenberg, U., Oosterlee, C. W., and Schuller, A.,
       "Multigrid" San Diego: Academic Press, 2001.  Appendix A

    See Also
    --------
    aggregation.smoothed_aggregation_solver, multilevel_solver,
    aggregation.rootnode_solver

    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    # Convert A to csr
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except:
            raise TypeError(
                'Argument A must have type csr_matrix, bsr_matrix, \
                             or be convertible to csr_matrix')

    # if isspmatrix_bsr(A):
    #     warn("Classical AMG is often more effective on CSR matrices.")

    # preprocess A
    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    levels = [multilevel_solver.level()]
    levels[-1].A = A

    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        extend_hierarchy(levels, strength, CF, interpolation, restriction,
                         keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 16
0
def smoothed_aggregation_helmholtz_solver(A,
                                          planewaves,
                                          use_constant=(True, {
                                              'last_level': 0
                                          }),
                                          symmetry='symmetric',
                                          strength='symmetric',
                                          aggregate='standard',
                                          smooth=('energy', {
                                              'krylov': 'gmres'
                                          }),
                                          presmoother=('gauss_seidel_nr', {
                                              'sweep': 'symmetric'
                                          }),
                                          postsmoother=('gauss_seidel_nr', {
                                              'sweep': 'symmetric'
                                          }),
                                          improve_candidates='default',
                                          max_levels=10,
                                          max_coarse=100,
                                          **kwargs):
    """
    Create a multilevel solver using Smoothed Aggregation (SA) for a 2D Helmholtz operator

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    planewaves : { list }
        [pw_0, pw_1, ..., pw_n], where the k-th tuple pw_k is of the form (fn,
        args).  fn is a callable and args is a dictionary of arguments for fn.
        This k-th tuple is used to define any new planewaves (i.e., new coarse
        grid basis functions) to be appended to the existing B_k at that level. 
            The function fn must return functions defined on the finest level, 
        i.e., a collection of vector(s) of length A.shape[0].  These vectors
        are then restricted to the appropriate level, where they enrich the 
        coarse space.
            Instead of a tuple, None can be used to stipulate no introduction
        of planewaves at that level.  If len(planewaves) < max_levels, the 
        last entry is used to define coarser level planewaves.
    use_constant : {tuple}
        Tuple of the form (bool, {'last_level':int}).  The boolean denotes 
        whether to introduce the constant in B at level 0.  'last_level' denotes
        the final level to use the constant in B.  That is, if 'last_level' is 1,
        then the vector in B corresponding to the constant on level 0 is dropped 
        from B at level 2.
            This is important, because using constant based interpolation beyond
        the Nyquist rate will result in poor solver performance.
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are the same
        Note that this flag does not denote definiteness of the operator.
    strength : ['symmetric', 'classical', 'evolution', ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.  
            See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : ['standard', 'lloyd', 'naive', ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : ['jacobi', 'richardson', 'energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel', {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {list} : default [('block_gauss_seidel', {'sweep':'symmetric'}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.
            The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid. 

    Other Parameters
    ----------------
    coarse_solver : ['splu','lu', ... ]
        Solver used at the coarsest level of the MG hierarchy 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, smoothed_aggregation_solver

    Notes
    -----
    - The additional parameters are passed through as arguments to
      multilevel_solver.  Refer to pyamg.multilevel_solver for additional
      documentation.

    - The parameters smooth, strength, aggregate, presmoother, postsmoother can
      be varied on a per level basis.  For different methods on different
      levels, use a list as input so that the ith entry defines the method at
      the ith level.  If there are more levels in the hierarchy than list
      entries, the last entry will define the method for all levels lower.
      
      Examples are:
      smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
      presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
      aggregate=['standard', 'naive']
      strength=[('symmetric', {'theta':0.25}), ('symmetric',{'theta':0.08})]

    - Predefined strength of connection and aggregation schemes can be
      specified.  These options are best used together, but aggregation can be
      predefined while strength of connection is not.

      For predefined strength of connection, use a list consisting of tuples of
      the form ('predefined', {'C' : C0}), where C0 is a csr_matrix and each
      degree-of-freedom in C0 represents a supernode.  For instance to
      predefine a three-level hierarchy, use [('predefined', {'C' : C0}),
      ('predefined', {'C' : C1}) ].
      
      Similarly for predefined aggregation, use a list of tuples.  For instance
      to predefine a three-level hierarchy, use [('predefined', {'AggOp' :
      Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the dimensions of A,
      Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] == A.shape[0] and
      Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_helmholtz_solver, poisson
    >>> from scipy.sparse.linalg import cg
    >>> from scipy import rand
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = rand(A.shape[0])                           # random RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] L. N. Olson and J. B. Schroder. Smoothed Aggregation for Helmholtz
    Problems. Numerical Linear Algebra with Applications.  pp. 361--386.  17
    (2010).

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        raise TypeError('argument A must have type csr_matrix or bsr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and (
            symmetry != 'nonsymmetric'):
        raise ValueError(
            'expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter '
        )
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    ##
    # Preprocess and extend planewaves to length max_levels
    planewaves = preprocess_planewaves(planewaves, max_levels)
    # Check that the user has defined functions for B at each level
    use_const, args = unpack_arg(use_constant)
    first_planewave_level = -1
    for pw in planewaves:
        first_planewave_level += 1
        if pw is not None:
            break
    ##
    if (use_const == False) and (planewaves[0] == None):
        raise ValueError('No functions defined for B on the finest level, ' + \
              'either use_constant must be true, or planewaves must be defined for level 0')
    elif (use_const
          == True) and (args['last_level'] < first_planewave_level - 1):
        raise ValueError('Some levels have no function(s) defined for B.  ' + \
                         'Change use_constant and/or planewave arguments.')

    ##
    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates = levelize_smooth_or_improve_candidates(
        improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    ##
    # Start first level
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A  # matrix
    levels[-1].B = numpy.zeros(
        (A.shape[0], 0))  # place-holder for near-nullspace candidates

    zeros_0 = numpy.zeros((levels[0].A.shape[0], ), dtype=A.dtype)
    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        A = levels[0].A
        A_l = levels[-1].A
        zeros_l = numpy.zeros((levels[-1].A.shape[0], ), dtype=A.dtype)

        ##
        # Generate additions to n-th level candidates
        if planewaves[len(levels) - 1] != None:
            fn, args = unpack_arg(planewaves[len(levels) - 1])
            Bcoarse2 = numpy.array(fn(**args))

            ##
            # As in alpha-SA, relax the candidates before restriction
            if improve_candidates[0] is not None:
                Bcoarse2 = relaxation_as_linear_operator(
                    improve_candidates[0], A, zeros_0) * Bcoarse2

            ##
            # Restrict Bcoarse2 to current level
            for i in range(len(levels) - 1):
                Bcoarse2 = levels[i].R * Bcoarse2
            # relax after restriction
            if improve_candidates[len(levels) - 1] is not None:
                Bcoarse2 = relaxation_as_linear_operator(
                    improve_candidates[len(levels) - 1], A_l,
                    zeros_l) * Bcoarse2
        else:
            Bcoarse2 = numpy.zeros((A_l.shape[0], 0), dtype=A.dtype)

        ##
        # Deal with the use of constant in interpolation
        use_const, args = unpack_arg(use_constant)
        if use_const and len(levels) == 1:
            # If level 0, and the constant is to be used in interpolation
            levels[0].B = numpy.hstack((numpy.ones((A.shape[0], 1),
                                                   dtype=A.dtype), Bcoarse2))
        elif use_const and args['last_level'] == len(levels) - 2:
            # If the previous level was the last level to use the constant, then remove the
            # coarse grid function based on the constant from B
            levels[-1].B = numpy.hstack((levels[-1].B[:, 1:], Bcoarse2))
        else:
            levels[-1].B = numpy.hstack((levels[-1].B, Bcoarse2))

        ##
        # Create and Append new level
        extend_hierarchy(levels,
                         strength,
                         aggregate,
                         smooth, [None for i in range(max_levels)],
                         keep=True)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 17
0
def smoothed_aggregation_solver(A, B=None, BH=None,
                                symmetry='hermitian', strength='symmetric',
                                aggregate='standard',
                                smooth=('jacobi', {'omega': 4.0/3.0}),
                                presmoother=('block_gauss_seidel',
                                             {'sweep': 'symmetric'}),
                                postsmoother=('block_gauss_seidel',
                                              {'sweep': 'symmetric'}),
                                improve_candidates=[('block_gauss_seidel',
                                                    {'sweep': 'symmetric',
                                                     'iterations': 4}),
                                                    None],
                                max_levels = 10, max_coarse = 10,
                                diagonal_dominance=False,
                                keep=False, **kwargs):
    """
    Create a multilevel solver using classical-style Smoothed Aggregation (SA)

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    B : {None, array_like}
        Right near-nullspace candidates stored in the columns of an NxK array.
        The default value B=None is equivalent to B=ones((N,1))
    BH : {None, array_like}
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.
        The default value B=None is equivalent to BH=B.copy()
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note, in the strictly real case, symmetric and hermitian are the same
        Note, this flag does not denote definiteness of the operator.
    strength : {list} : default ['symmetric', 'classical', 'evolution',
               'algebraic_distance', 'affinity',
               ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.
        See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : {list} : default ['standard', 'lloyd', 'naive',
                ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : {list} : default ['jacobi', 'richardson', 'energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel',
                  {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {tuple, string, list} : default
                        [('block_gauss_seidel',
                         {'sweep': 'symmetric', 'iterations': 4}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    diagonal_dominance : {bool, tuple} : default False
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.
    keep : {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), and aggregation (AggOp) are kept.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, classical.ruge_stuben_solver,
    aggregation.smoothed_aggregation_solver

    Notes
    -----
        - This method implements classical-style SA, not root-node style SA
          (see aggregation.rootnode_solver).

        - The additional parameters are passed through as arguments to
          multilevel_solver.  Refer to pyamg.multilevel_solver for additional
          documentation.

        - At each level, four steps are executed in order to define the coarser
          level operator.

          1. Matrix A is given and used to derive a strength matrix, C.

          2. Based on the strength matrix, indices are grouped or aggregated.

          3. The aggregates define coarse nodes and a tentative prolongation
             operator T is defined by injection

          4. The tentative prolongation operator is smoothed by a relaxation
             scheme to improve the quality and extent of interpolation from the
             aggregates to fine nodes.

        - The parameters smooth, strength, aggregate, presmoother, postsmoother
          can be varied on a per level basis.  For different methods on
          different levels, use a list as input so that the i-th entry defines
          the method at the i-th level.  If there are more levels in the
          hierarchy than list entries, the last entry will define the method
          for all levels lower.

          Examples are:
          smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
          presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
          aggregate=['standard', 'naive']
          strength=[('symmetric', {'theta':0.25}), ('symmetric',
                                                    {'theta':0.08})]

        - Predefined strength of connection and aggregation schemes can be
          specified.  These options are best used together, but aggregation can
          be predefined while strength of connection is not.

          For predefined strength of connection, use a list consisting of
          tuples of the form ('predefined', {'C' : C0}), where C0 is a
          csr_matrix and each degree-of-freedom in C0 represents a supernode.
          For instance to predefine a three-level hierarchy, use
          [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

          Similarly for predefined aggregation, use a list of tuples.  For
          instance to predefine a three-level hierarchy, use [('predefined',
          {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
          dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
          A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
          csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                      # RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html

    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix or '
                            'bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and\
            (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' or '
                         'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype),
                    np.eye(blocksize(A)))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError('The near null-space modes B have incorrect \
                              dimensions for matrix A')
        if B.shape[1] < blocksize(A):
            warn('Having less target vectors, B.shape[1], than \
                  blocksize of A can degrade convergence factors.')

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError('The number of left and right near \
                                  null-space modes B and BH, must be equal')
            if BH.shape[0] != A.shape[0]:
                raise ValueError('The near null-space modes BH have \
                                  incorrect dimensions for matrix A')

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A          # matrix

    # Append near nullspace candidates
    levels[-1].B = B          # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH    # left candidates

    while len(levels) < max_levels and\
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    # Construct and return multilevel hierarchy
    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 18
0
def rootnode_solver(A, B=None, BH=None,
                    symmetry='hermitian', strength='symmetric',
                    aggregate='standard', smooth='energy',
                    presmoother=('block_gauss_seidel',
                                 {'sweep': 'symmetric'}),
                    postsmoother=('block_gauss_seidel',
                                  {'sweep': 'symmetric'}),
                    improve_candidates=('block_gauss_seidel',
                                        {'sweep': 'symmetric',
                                         'iterations': 4}),
                    max_levels=10, max_coarse=10,
                    diagonal_dominance=False, keep=False, **kwargs):
    """Create a multilevel solver using root-node based Smoothed Aggregation (SA).

    See the notes below, for the major differences with the classical-style
    smoothed aggregation solver in aggregation.smoothed_aggregation_solver.

    Parameters
    ----------
    A : csr_matrix, bsr_matrix
        Sparse NxN matrix in CSR or BSR format

    B : None, array_like
        Right near-nullspace candidates stored in the columns of an NxK array.
        K must be >= the blocksize of A (see reference [2011OlScTu]_). The default value
        B=None is equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))

    BH : None, array_like
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.  K must be >= the
        blocksize of A (see reference [2011OlScTu]_). The default value B=None is
        equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))

    symmetry : string
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are
        the same
        Note that this flag does not denote definiteness of the operator.

    strength : list
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.

    aggregate : list
        Method used to aggregate nodes.

    smooth : list
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('energy',{'krylov' : 'gmres'}).  Only 'energy' and None are valid
        prolongation smoothing options.

    presmoother : tuple, string, list
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.

    postsmoother : tuple, string, list
        Same as presmoother, except defines the postsmoother.

    improve_candidates : tuple, string, list
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.

    max_levels : integer
        Maximum number of levels to be used in the multilevel solver.

    max_coarse : integer
        Maximum number of variables permitted on the coarse grid.

    diagonal_dominance : bool, tuple
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.

    keep : bool
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), aggregation (AggOp), and arrays
        storing the C-points (Cpts) and F-points (Fpts) are kept at
        each level.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
        Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, aggregation.smoothed_aggregation_solver,
    classical.ruge_stuben_solver

    Notes
    -----
         - Root-node style SA differs from classical SA primarily by preserving
           and identity block in the interpolation operator, P.  Each aggregate
           has a "root-node" or "center-node" associated with it, and this
           root-node is injected from the coarse grid to the fine grid.  The
           injection corresponds to the identity block.

         - Only smooth={'energy', None} is supported for prolongation
           smoothing.  See reference [2011OlScTu]_ below for more details on why the
           'energy' prolongation smoother is the natural counterpart to
           root-node style SA.

         - The additional parameters are passed through as arguments to
           multilevel_solver.  Refer to pyamg.multilevel_solver for additional
           documentation.

         - At each level, four steps are executed in order to define the coarser
           level operator.

           1. Matrix A is given and used to derive a strength matrix, C.

           2. Based on the strength matrix, indices are grouped or aggregated.

           3. The aggregates define coarse nodes and a tentative prolongation
              operator T is defined by injection

           4. The tentative prolongation operator is smoothed by a relaxation
              scheme to improve the quality and extent of interpolation from the
              aggregates to fine nodes.

         - The parameters smooth, strength, aggregate, presmoother, postsmoother
           can be varied on a per level basis.  For different methods on
           different levels, use a list as input so that the i-th entry defines
           the method at the i-th level.  If there are more levels in the
           hierarchy than list entries, the last entry will define the method
           for all levels lower.

           Examples are:
           smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
           presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
           aggregate=['standard', 'naive']
           strength=[('symmetric', {'theta':0.25}), ('symmetric', {'theta':0.08})]

         - Predefined strength of connection and aggregation schemes can be
           specified.  These options are best used together, but aggregation can
           be predefined while strength of connection is not.

           For predefined strength of connection, use a list consisting of
           tuples of the form ('predefined', {'C' : C0}), where C0 is a
           csr_matrix and each degree-of-freedom in C0 represents a supernode.
           For instance to predefine a three-level hierarchy, use
           [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

           Similarly for predefined aggregation, use a list of tuples.  For
           instance to predefine a three-level hierarchy, use [('predefined',
           {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
           dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
           A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
           csr_matrix.

           Because this is a root-nodes solver, if a member of the predefined
           aggregation list is predefined, it must be of the form
           ('predefined', {'AggOp' : Agg, 'Cnodes' : Cnodes}).

    Examples
    --------
    >>> from pyamg import rootnode_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100, 100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                   # RHS
    >>> ml = rootnode_solver(A)                     # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x, info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1996VaMa] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html
    .. [2011OlScTu] Olson, L. and Schroder, J. and Tuminaro, R.,
       "A general interpolation strategy for algebraic
       multigrid using energy minimization", SIAM Journal
       on Scientific Computing (SISC), vol. 33, pp.
       966--991, 2011.

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except BaseException:
            raise TypeError('Argument A must have type csr_matrix, \
                             bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and \
            (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' \
                          or \'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')
    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype),
                    np.eye(blocksize(A)))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError('The near null-space modes B have incorrect \
                              dimensions for matrix A')
        if B.shape[1] < blocksize(A):
            raise ValueError('B.shape[1] must be >= the blocksize of A')

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError('The number of left and right near \
                                  null-space modes B and BH, must be equal')
            if BH.shape[0] != A.shape[0]:
                raise ValueError('The near null-space modes BH have \
                                  incorrect dimensions for matrix A')

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A          # matrix

    # Append near nullspace candidates
    levels[-1].B = B          # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH    # left candidates

    while len(levels) < max_levels and \
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
def smoothed_aggregation_helmholtz_solver(A, planewaves, use_constant=(True, {'last_level':0}), 
        symmetry='symmetric', strength='symmetric', aggregate='standard',
        smooth=('energy', {'krylov': 'gmres'}),
        presmoother=('gauss_seidel_nr',{'sweep':'symmetric'}),
        postsmoother=('gauss_seidel_nr',{'sweep':'symmetric'}),
        improve_candidates='default', max_levels = 10, max_coarse = 100, **kwargs):
    
    """
    Create a multilevel solver using Smoothed Aggregation (SA) for a 2D Helmholtz operator

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    planewaves : { list }
        [pw_0, pw_1, ..., pw_n], where the k-th tuple pw_k is of the form (fn,
        args).  fn is a callable and args is a dictionary of arguments for fn.
        This k-th tuple is used to define any new planewaves (i.e., new coarse
        grid basis functions) to be appended to the existing B_k at that level. 
            The function fn must return functions defined on the finest level, 
        i.e., a collection of vector(s) of length A.shape[0].  These vectors
        are then restricted to the appropriate level, where they enrich the 
        coarse space.
            Instead of a tuple, None can be used to stipulate no introduction
        of planewaves at that level.  If len(planewaves) < max_levels, the 
        last entry is used to define coarser level planewaves.
    use_constant : {tuple}
        Tuple of the form (bool, {'last_level':int}).  The boolean denotes 
        whether to introduce the constant in B at level 0.  'last_level' denotes
        the final level to use the constant in B.  That is, if 'last_level' is 1,
        then the vector in B corresponding to the constant on level 0 is dropped 
        from B at level 2.
            This is important, because using constant based interpolation beyond
        the Nyquist rate will result in poor solver performance.
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are the same
        Note that this flag does not denote definiteness of the operator.
    strength : ['symmetric', 'classical', 'evolution', ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.  
            See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : ['standard', 'lloyd', 'naive', ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : ['jacobi', 'richardson', 'energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('jacobi',{'filter' : True }).  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel', {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {list} : default [('block_gauss_seidel', {'sweep':'symmetric'}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.
            The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid. 

    Other Parameters
    ----------------
    coarse_solver : ['splu','lu', ... ]
        Solver used at the coarsest level of the MG hierarchy 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, smoothed_aggregation_solver

    Notes
    -----
    - The additional parameters are passed through as arguments to
      multilevel_solver.  Refer to pyamg.multilevel_solver for additional
      documentation.

    - The parameters smooth, strength, aggregate, presmoother, postsmoother can
      be varied on a per level basis.  For different methods on different
      levels, use a list as input so that the ith entry defines the method at
      the ith level.  If there are more levels in the hierarchy than list
      entries, the last entry will define the method for all levels lower.
      
      Examples are:
      smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
      presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
      aggregate=['standard', 'naive']
      strength=[('symmetric', {'theta':0.25}), ('symmetric',{'theta':0.08})]

    - Predefined strength of connection and aggregation schemes can be
      specified.  These options are best used together, but aggregation can be
      predefined while strength of connection is not.

      For predefined strength of connection, use a list consisting of tuples of
      the form ('predefined', {'C' : C0}), where C0 is a csr_matrix and each
      degree-of-freedom in C0 represents a supernode.  For instance to
      predefine a three-level hierarchy, use [('predefined', {'C' : C0}),
      ('predefined', {'C' : C1}) ].
      
      Similarly for predefined aggregation, use a list of tuples.  For instance
      to predefine a three-level hierarchy, use [('predefined', {'AggOp' :
      Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the dimensions of A,
      Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] == A.shape[0] and
      Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a csr_matrix.

    Examples
    --------
    >>> from pyamg import smoothed_aggregation_helmholtz_solver, poisson
    >>> from scipy.sparse.linalg import cg
    >>> from scipy import rand
    >>> A = poisson((100,100), format='csr')           # matrix
    >>> b = rand(A.shape[0])                           # random RHS
    >>> ml = smoothed_aggregation_solver(A)            # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] L. N. Olson and J. B. Schroder. Smoothed Aggregation for Helmholtz
    Problems. Numerical Linear Algebra with Applications.  pp. 361--386.  17
    (2010).

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        raise TypeError('argument A must have type csr_matrix or bsr_matrix')

    A = A.asfptype()
    
    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')
    
    ##
    # Preprocess and extend planewaves to length max_levels
    planewaves = preprocess_planewaves(planewaves, max_levels)
    # Check that the user has defined functions for B at each level
    use_const, args = unpack_arg(use_constant)
    first_planewave_level = -1
    for pw in planewaves:
        first_planewave_level += 1
        if pw is not None:
            break
    ##    
    if (use_const == False) and (planewaves[0] == None):
        raise ValueError('No functions defined for B on the finest level, ' + \
              'either use_constant must be true, or planewaves must be defined for level 0')
    elif (use_const == True) and (args['last_level'] < first_planewave_level-1):
        raise ValueError('Some levels have no function(s) defined for B.  ' + \
                         'Change use_constant and/or planewave arguments.')
        
    ##
    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates = levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)


    ##
    # Start first level
    levels = []
    levels.append( multilevel_solver.level() )
    levels[-1].A = A                            # matrix
    levels[-1].B = numpy.zeros((A.shape[0],0))  # place-holder for near-nullspace candidates

    zeros_0 = numpy.zeros((levels[0].A.shape[0],), dtype=A.dtype)
    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        A = levels[0].A
        A_l = levels[-1].A
        zeros_l = numpy.zeros((levels[-1].A.shape[0],), dtype=A.dtype)

        ##
        # Generate additions to n-th level candidates
        if planewaves[len(levels)-1] != None:
            fn, args = unpack_arg(planewaves[len(levels)-1])
            Bcoarse2 = numpy.array(fn(**args))

            ##
            # As in alpha-SA, relax the candidates before restriction
            if improve_candidates[0] is not None:
                Bcoarse2 = relaxation_as_linear_operator(improve_candidates[0], A, zeros_0)*Bcoarse2
            
            ##
            # Restrict Bcoarse2 to current level
            for i in range(len(levels)-1):
                Bcoarse2 = levels[i].R*Bcoarse2
            # relax after restriction
            if improve_candidates[len(levels)-1] is not None:
                Bcoarse2 =relaxation_as_linear_operator(improve_candidates[len(levels)-1],A_l,zeros_l)*Bcoarse2
        else:
            Bcoarse2 = numpy.zeros((A_l.shape[0],0),dtype=A.dtype)

        ##
        # Deal with the use of constant in interpolation
        use_const, args = unpack_arg(use_constant)
        if use_const and len(levels) == 1:
            # If level 0, and the constant is to be used in interpolation
           levels[0].B = numpy.hstack( (numpy.ones((A.shape[0],1), dtype=A.dtype), Bcoarse2) )
        elif use_const and args['last_level'] == len(levels)-2: 
            # If the previous level was the last level to use the constant, then remove the
            # coarse grid function based on the constant from B
            levels[-1].B = numpy.hstack( (levels[-1].B[:,1:], Bcoarse2) )
        else:
            levels[-1].B = numpy.hstack((levels[-1].B, Bcoarse2))
        
        ##
        # Create and Append new level
        extend_hierarchy(levels, strength, aggregate, smooth, [None for i in range(max_levels)] ,keep=True)
    
    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 20
0
def rootnode_solver(A, B=None, BH=None,
                    symmetry='hermitian', strength='symmetric',
                    aggregate='standard', smooth='energy',
                    presmoother=('block_gauss_seidel',
                                 {'sweep': 'symmetric'}),
                    postsmoother=('block_gauss_seidel',
                                  {'sweep': 'symmetric'}),
                    improve_candidates=('block_gauss_seidel',
                                        {'sweep': 'symmetric',
                                         'iterations': 4}),
                    max_levels = 10, max_coarse = 10,
                    diagonal_dominance=False, keep=False, **kwargs):
    """
    Create a multilevel solver using root-node based Smoothed Aggregation (SA).
    See the notes below, for the major differences with the classical-style
    smoothed aggregation solver in aggregation.smoothed_aggregation_solver.

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix in CSR or BSR format
    B : {None, array_like}
        Right near-nullspace candidates stored in the columns of an NxK array.
        K must be >= the blocksize of A (see reference [2]). The default value
        B=None is equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))
    BH : {None, array_like}
        Left near-nullspace candidates stored in the columns of an NxK array.
        BH is only used if symmetry is 'nonsymmetric'.  K must be >= the
        blocksize of A (see reference [2]). The default value B=None is
        equivalent to choosing the constant over each block-variable,
        B=np.kron(np.ones((A.shape[0]/blocksize(A), 1)), np.eye(blocksize(A)))
    symmetry : {string}
        'symmetric' refers to both real and complex symmetric
        'hermitian' refers to both complex Hermitian and real Hermitian
        'nonsymmetric' i.e. nonsymmetric in a hermitian sense
        Note that for the strictly real case, symmetric and hermitian are
        the same
        Note that this flag does not denote definiteness of the operator.
    strength : {list} : default
        ['symmetric', 'classical', 'evolution', 'algebraic_distance', 'affinity',
            ('predefined', {'C' : csr_matrix}), None]
        Method used to determine the strength of connection between unknowns of
        the linear system.  Method-specific parameters may be passed in using a
        tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None,
        all nonzero entries of the matrix are considered strong.
        See notes below for varying this parameter on a per level basis.  Also,
        see notes below for using a predefined strength matrix on each level.
    aggregate : {list} : default ['standard', 'lloyd', 'naive',
                                  ('predefined', {'AggOp' : csr_matrix})]
        Method used to aggregate nodes.  See notes below for varying this
        parameter on a per level basis.  Also, see notes below for using a
        predefined aggregation on each level.
    smooth : {list} : default ['energy', None]
        Method used to smooth the tentative prolongator.  Method-specific
        parameters may be passed in using a tuple, e.g.  smooth=
        ('energy',{'krylov' : 'gmres'}).  Only 'energy' and None are valid
        prolongation smoothing options.  See notes below for varying this
        parameter on a per level basis.
    presmoother : {tuple, string, list} : default ('block_gauss_seidel',
                                                   {'sweep':'symmetric'})
        Defines the presmoother for the multilevel cycling.  The default block
        Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix
        is CSR or is a BSR matrix with blocksize of 1.  See notes below for
        varying this parameter on a per level basis.
    postsmoother : {tuple, string, list}
        Same as presmoother, except defines the postsmoother.
    improve_candidates : {tuple, string, list} : default
                         [('block_gauss_seidel',
                          {'sweep': 'symmetric', 'iterations': 4}), None]
        The ith entry defines the method used to improve the candidates B on
        level i.  If the list is shorter than max_levels, then the last entry
        will define the method for all levels lower.  If tuple or string, then
        this single relaxation descriptor defines improve_candidates on all
        levels.
        The list elements are relaxation descriptors of the form used for
        presmoother and postsmoother.  A value of None implies no action on B.
    max_levels : {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse : {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    diagonal_dominance : {bool, tuple} : default False
        If True (or the first tuple entry is True), then avoid coarsening
        diagonally dominant rows.  The second tuple entry requires a
        dictionary, where the key value 'theta' is used to tune the diagonal
        dominance threshold.
    keep : {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C),
        tentative prolongation (T), aggregation (AggOp), and arrays
        storing the C-points (Cpts) and F-points (Fpts) are kept at
        each level.

    Other Parameters
    ----------------
    cycle_type : ['V','W','F']
        Structrure of multigrid cycle
    coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ]
        Solver used at the coarsest level of the MG hierarchy.
            Optionally, may be a tuple (fn, args), where fn is a string such as
        ['splu', 'lu', ...] or a callable function, and args is a dictionary of
        arguments to be passed to fn.
    setup_complexity : bool
        For a detailed, more accurate setup complexity, pass in 
        'setup_complexity' = True. This will slow down performance, but
        increase accuracy of complexity count. 

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    See Also
    --------
    multilevel_solver, aggregation.smoothed_aggregation_solver,
    classical.ruge_stuben_solver

    Notes
    -----
         - Root-node style SA differs from classical SA primarily by preserving
           and identity block in the interpolation operator, P.  Each aggregate
           has a "root-node" or "center-node" associated with it, and this
           root-node is injected from the coarse grid to the fine grid.  The
           injection corresponds to the identity block.

         - Only smooth={'energy', None} is supported for prolongation
           smoothing.  See reference [2] below for more details on why the
           'energy' prolongation smoother is the natural counterpart to
           root-node style SA.

        - The additional parameters are passed through as arguments to
          multilevel_solver.  Refer to pyamg.multilevel_solver for additional
          documentation.

        - At each level, four steps are executed in order to define the coarser
          level operator.

          1. Matrix A is given and used to derive a strength matrix, C.

          2. Based on the strength matrix, indices are grouped or aggregated.

          3. The aggregates define coarse nodes and a tentative prolongation
             operator T is defined by injection

          4. The tentative prolongation operator is smoothed by a relaxation
             scheme to improve the quality and extent of interpolation from the
             aggregates to fine nodes.

        - The parameters smooth, strength, aggregate, presmoother, postsmoother
          can be varied on a per level basis.  For different methods on
          different levels, use a list as input so that the i-th entry defines
          the method at the i-th level.  If there are more levels in the
          hierarchy than list entries, the last entry will define the method
          for all levels lower.

          Examples are:
          smooth=[('jacobi', {'omega':1.0}), None, 'jacobi']
          presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor']
          aggregate=['standard', 'naive']
          strength=[('symmetric', {'theta':0.25}),
                    ('symmetric', {'theta':0.08})]

        - Predefined strength of connection and aggregation schemes can be
          specified.  These options are best used together, but aggregation can
          be predefined while strength of connection is not.

          For predefined strength of connection, use a list consisting of
          tuples of the form ('predefined', {'C' : C0}), where C0 is a
          csr_matrix and each degree-of-freedom in C0 represents a supernode.
          For instance to predefine a three-level hierarchy, use
          [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ].

          Similarly for predefined aggregation, use a list of tuples.  For
          instance to predefine a three-level hierarchy, use [('predefined',
          {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the
          dimensions of A, Agg0 and Agg1 are compatible, i.e.  Agg0.shape[1] ==
          A.shape[0] and Agg1.shape[1] == Agg0.shape[0].  Each AggOp is a
          csr_matrix.

          Because this is a root-nodes solver, if a member of the predefined
          aggregation list is predefined, it must be of the form
          ('predefined', {'AggOp' : Agg, 'Cnodes' : Cnodes}).

    Examples
    --------
    >>> from pyamg import rootnode_solver
    >>> from pyamg.gallery import poisson
    >>> from scipy.sparse.linalg import cg
    >>> import numpy as np
    >>> A = poisson((100, 100), format='csr')           # matrix
    >>> b = np.ones((A.shape[0]))                   # RHS
    >>> ml = rootnode_solver(A)                     # AMG solver
    >>> M = ml.aspreconditioner(cycle='V')             # preconditioner
    >>> x, info = cg(A, b, tol=1e-8, maxiter=30, M=M)   # solve with CG

    References
    ----------
    .. [1] Vanek, P. and Mandel, J. and Brezina, M.,
       "Algebraic Multigrid by Smoothed Aggregation for
       Second and Fourth Order Elliptic Problems",
       Computing, vol. 56, no. 3, pp. 179--196, 1996.
       http://citeseer.ist.psu.edu/vanek96algebraic.html
    .. [2] Olson, L. and Schroder, J. and Tuminaro, R.,
       "A general interpolation strategy for algebraic
       multigrid using energy minimization", SIAM Journal
       on Scientific Computing (SISC), vol. 33, pp.
       966--991, 2011.
    """

    if ('setup_complexity' in kwargs):
        if kwargs['setup_complexity'] == True:
            mat_mat_complexity.__detailed__ = True
        del kwargs['setup_complexity']

    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix, \
                             bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()

    if (symmetry != 'symmetric') and (symmetry != 'hermitian') and \
            (symmetry != 'nonsymmetric'):
        raise ValueError('expected \'symmetric\', \'nonsymmetric\' \
                          or \'hermitian\' for the symmetry parameter ')
    A.symmetry = symmetry

    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Right near nullspace candidates use constant for each variable as default
    if B is None:
        B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype),
                    np.eye(blocksize(A)))
    else:
        B = np.asarray(B, dtype=A.dtype)
        if len(B.shape) == 1:
            B = B.reshape(-1, 1)
        if B.shape[0] != A.shape[0]:
            raise ValueError('The near null-space modes B have incorrect \
                              dimensions for matrix A')
        if B.shape[1] < blocksize(A):
            raise ValueError('B.shape[1] must be >= the blocksize of A')

    # Left near nullspace candidates
    if A.symmetry == 'nonsymmetric':
        if BH is None:
            BH = B.copy()
        else:
            BH = np.asarray(BH, dtype=A.dtype)
            if len(BH.shape) == 1:
                BH = BH.reshape(-1, 1)
            if BH.shape[1] != B.shape[1]:
                raise ValueError('The number of left and right near \
                                  null-space modes B and BH, must be equal')
            if BH.shape[0] != A.shape[0]:
                raise ValueError('The near null-space modes BH have \
                                  incorrect dimensions for matrix A')

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    improve_candidates =\
        levelize_smooth_or_improve_candidates(improve_candidates, max_levels)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Construct multilevel structure
    levels = []
    levels.append(multilevel_solver.level())
    levels[-1].A = A          # matrix

    # Append near nullspace candidates
    levels[-1].B = B          # right candidates
    if A.symmetry == 'nonsymmetric':
        levels[-1].BH = BH    # left candidates

    while len(levels) < max_levels and \
            int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse:
        extend_hierarchy(levels, strength, aggregate, smooth,
                         improve_candidates, diagonal_dominance, keep)

    # Construct and return multilevel hierarchy
    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 21
0
def ruge_stuben_solver(A,
                       strength=('classical', {'theta': 0.25}),
                       CF='RS',
                       presmoother=('gauss_seidel', {'sweep': 'symmetric'}),
                       postsmoother=('gauss_seidel', {'sweep': 'symmetric'}),
                       max_levels=10, max_coarse=500, keep=False, **kwargs):
    """Create a multilevel solver using Classical AMG (Ruge-Stuben AMG)

    Parameters
    ----------
    A : csr_matrix
        Square matrix in CSR format
    strength : ['symmetric', 'classical', 'evolution', None]
        Method used to determine the strength of connection between unknowns
        of the linear system.  Method-specific parameters may be passed in
        using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If
        strength=None, all nonzero entries of the matrix are considered strong.
    CF : {string} : default 'RS'
        Method used for coarse grid selection (C/F splitting)
        Supported methods are RS, PMIS, PMISc, CLJP, and CLJPc
    presmoother : {string or dict}
        Method used for presmoothing at each level.  Method-specific parameters
        may be passed in using a tuple, e.g.
        presmoother=('gauss_seidel',{'sweep':'symmetric}), the default.
    postsmoother : {string or dict}
        Postsmoothing method with the same usage as presmoother
    max_levels: {integer} : default 10
        Maximum number of levels to be used in the multilevel solver.
    max_coarse: {integer} : default 500
        Maximum number of variables permitted on the coarse grid.
    keep: {bool} : default False
        Flag to indicate keeping extra operators in the hierarchy for
        diagnostics.  For example, if True, then strength of connection (C) and
        tentative prolongation (T) are kept.

    Returns
    -------
    ml : multilevel_solver
        Multigrid hierarchy of matrices and prolongation operators

    Examples
    --------
    >>> from pyamg.gallery import poisson
    >>> from pyamg import ruge_stuben_solver
    >>> A = poisson((10,),format='csr')
    >>> ml = ruge_stuben_solver(A,max_coarse=3)

    Notes
    -----

    "coarse_solver" is an optional argument and is the solver used at the
    coarsest grid.  The default is a pseudo-inverse.  Most simply,
    coarse_solver can be one of ['splu', 'lu', 'cholesky, 'pinv',
    'gauss_seidel', ... ].  Additionally, coarse_solver may be a tuple
    (fn, args), where fn is a string such as ['splu', 'lu', ...] or a callable
    function, and args is a dictionary of arguments to be passed to fn.


    References
    ----------
    .. [1] Trottenberg, U., Oosterlee, C. W., and Schuller, A.,
       "Multigrid" San Diego: Academic Press, 2001.  Appendix A

    See Also
    --------
    aggregation.smoothed_aggregation_solver, multilevel_solver,
    aggregation.rootnode_solver

    """

    levels = [multilevel_solver.level()]

    # convert A to csr
    if not isspmatrix_csr(A):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR",
                 SparseEfficiencyWarning)
        except:
            raise TypeError('Argument A must have type csr_matrix, \
                             or be convertible to csr_matrix')
    # preprocess A
    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    levels[-1].A = A

    while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse:
        extend_hierarchy(levels, strength, CF, keep)

    ml = multilevel_solver(levels, **kwargs)
    change_smoothers(ml, presmoother, postsmoother)
    return ml
Ejemplo n.º 22
0
def general_setup_stage(ml, symmetry, candidate_iters, prepostsmoother,
                        smooth, eliminate_local, coarse_solver, work):
    """Compute additional candidates and improvements following Algorithm 4 in Brezina et al.

    Parameters
    ----------
    candidate_iters
        number of test relaxation iterations
    epsilon
        minimum acceptable relaxation convergence factor

    References
    ----------
    .. [1] Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge
       "Adaptive Smoothed Aggregation (alphaSA) Multigrid"
       SIAM Review Volume 47,  Issue 2  (2005)
       http://www.cs.umn.edu/~maclach/research/aSA2.pdf

    """
    def make_bridge(T):
        M, N = T.shape
        K = T.blocksize[0]
        bnnz = T.indptr[-1]
        # the K+1 represents the new dof introduced by the new candidate.  the
        # bridge 'T' ignores this new dof and just maps zeros there
        data = np.zeros((bnnz, K+1, K), dtype=T.dtype)
        data[:, :-1, :] = T.data
        return bsr_matrix((data, T.indices, T.indptr),
                          shape=((K + 1) * int(M / K), N))

    def expand_candidates(B_old, nodesize):
        # insert a new dof that is always zero, to create NullDim+1 dofs per
        # node in B
        NullDim = B_old.shape[1]
        nnodes = int(B_old.shape[0] / nodesize)
        Bnew = np.zeros((nnodes, nodesize+1, NullDim), dtype=B_old.dtype)
        Bnew[:, :-1, :] = B_old.reshape(nnodes, nodesize, NullDim)
        return Bnew.reshape(-1, NullDim)

    levels = ml.levels

    x = sp.rand(levels[0].A.shape[0], 1)
    if levels[0].A.dtype.name.startswith('complex'):
        x = x + 1.0j*sp.rand(levels[0].A.shape[0], 1)
    b = np.zeros_like(x)

    x = ml.solve(b, x0=x, tol=float(np.finfo(np.float).tiny),
                 maxiter=candidate_iters)
    work[:] += ml.operator_complexity()*ml.levels[0].A.nnz*candidate_iters*2

    T0 = levels[0].T.copy()

    # TEST FOR CONVERGENCE HERE

    for i in range(len(ml.levels) - 2):
        # alpha-SA paper does local elimination here, but after talking
        # to Marian, its not clear that this helps things
        # fn, kwargs = unpack_arg(eliminate_local)
        # if fn == True:
        #    eliminate_local_candidates(x,levels[i].AggOp,levels[i].A,
        #    levels[i].T, **kwargs)

        # add candidate to B
        B = np.hstack((levels[i].B, x.reshape(-1, 1)))

        # construct Ptent
        T, R = fit_candidates(levels[i].AggOp, B)

        levels[i].T = T
        x = R[:, -1].reshape(-1, 1)

        # smooth P
        fn, kwargs = unpack_arg(smooth[i])
        if fn == 'jacobi':
            levels[i].P = jacobi_prolongation_smoother(levels[i].A, T,
                                                       levels[i].C, R,
                                                       **kwargs)
        elif fn == 'richardson':
            levels[i].P = richardson_prolongation_smoother(levels[i].A, T,
                                                           **kwargs)
        elif fn == 'energy':
            levels[i].P = energy_prolongation_smoother(levels[i].A, T,
                                                       levels[i].C, R, None,
                                                       (False, {}), **kwargs)
            x = R[:, -1].reshape(-1, 1)
        elif fn is None:
            levels[i].P = T
        else:
            raise ValueError('unrecognized prolongation smoother method %s' %
                             str(fn))

        # construct R
        if symmetry == 'symmetric':  # R should reflect A's structure
            levels[i].R = levels[i].P.T.asformat(levels[i].P.format)
        elif symmetry == 'hermitian':
            levels[i].R = levels[i].P.H.asformat(levels[i].P.format)

        # construct coarse A
        levels[i+1].A = levels[i].R * levels[i].A * levels[i].P

        # construct bridging P
        T_bridge = make_bridge(levels[i+1].T)
        R_bridge = levels[i+2].B

        # smooth bridging P
        fn, kwargs = unpack_arg(smooth[i+1])
        if fn == 'jacobi':
            levels[i+1].P = jacobi_prolongation_smoother(levels[i+1].A,
                                                         T_bridge,
                                                         levels[i+1].C,
                                                         R_bridge, **kwargs)
        elif fn == 'richardson':
            levels[i+1].P = richardson_prolongation_smoother(levels[i+1].A,
                                                             T_bridge,
                                                             **kwargs)
        elif fn == 'energy':
            levels[i+1].P = energy_prolongation_smoother(levels[i+1].A,
                                                         T_bridge,
                                                         levels[i+1].C,
                                                         R_bridge, None,
                                                         (False, {}), **kwargs)
        elif fn is None:
            levels[i+1].P = T_bridge
        else:
            raise ValueError('unrecognized prolongation smoother method %s' %
                             str(fn))

        # construct the "bridging" R
        if symmetry == 'symmetric':  # R should reflect A's structure
            levels[i+1].R = levels[i+1].P.T.asformat(levels[i+1].P.format)
        elif symmetry == 'hermitian':
            levels[i+1].R = levels[i+1].P.H.asformat(levels[i+1].P.format)

        # run solver on candidate
        solver = multilevel_solver(levels[i+1:], coarse_solver=coarse_solver)
        change_smoothers(solver, presmoother=prepostsmoother,
                         postsmoother=prepostsmoother)
        x = solver.solve(np.zeros_like(x), x0=x,
                         tol=float(np.finfo(np.float).tiny),
                         maxiter=candidate_iters)
        work[:] += 2 * solver.operator_complexity() * solver.levels[0].A.nnz *\
            candidate_iters*2

        # update values on next level
        levels[i+1].B = R[:, :-1].copy()
        levels[i+1].T = T_bridge

    # note that we only use the x from the second coarsest level
    fn, kwargs = unpack_arg(prepostsmoother)
    for lvl in reversed(levels[:-2]):
        x = lvl.P * x
        work[:] += lvl.A.nnz*candidate_iters*2

        if fn == 'gauss_seidel':
            # only relax at nonzeros, so as not to mess up any locally dropped
            # candidates
            indices = np.ravel(x).nonzero()[0]
            gauss_seidel_indexed(lvl.A, x, np.zeros_like(x), indices,
                                 iterations=candidate_iters, sweep='symmetric')

        elif fn == 'gauss_seidel_ne':
            gauss_seidel_ne(lvl.A, x, np.zeros_like(x),
                            iterations=candidate_iters, sweep='symmetric')

        elif fn == 'gauss_seidel_nr':
            gauss_seidel_nr(lvl.A, x, np.zeros_like(x),
                            iterations=candidate_iters, sweep='symmetric')

        elif fn == 'jacobi':
            jacobi(lvl.A, x, np.zeros_like(x), iterations=1,
                   omega=1.0 / rho_D_inv_A(lvl.A))

        elif fn == 'richardson':
            polynomial(lvl.A, x, np.zeros_like(x), iterations=1,
                       coefficients=[1.0/approximate_spectral_radius(lvl.A)])

        elif fn == 'gmres':
            x[:] = (gmres(lvl.A, np.zeros_like(x), x0=x,
                          maxiter=candidate_iters)[0]).reshape(x.shape)
        else:
            raise TypeError('Unrecognized smoother')

    # x will be dense again, so we have to drop locally again
    elim, elim_kwargs = unpack_arg(eliminate_local)
    if elim is True:
        x = x/norm(x, 'inf')
        eliminate_local_candidates(x, levels[0].AggOp, levels[0].A, T0,
                                   **elim_kwargs)

    return x.reshape(-1, 1)