def predict(self): self.set_conf() input_path = "../data/exampledata/LinearRegression/LinearReg100.train" LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = tempfile.gettempdir() # Set trainning data path self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, inputPath) # Set load model path self.conf.set(AngelConf.ANGEL_LOAD_MODEL_PATH, LOCAL_FS + TMP_PATH + "/model") # Set predict result path self.conf.set(AngelConf.ANGEL_PREDICT_PATH, LOCAL_FS + TMP_PATH + "/predict") # Set actionType prediction self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_PREDICT()) runner = LinearRegRunner() runner.predict(self.conf)
def train_on_local_cluster(self): self.set_conf() input_path = "./src/test/data/fm/food_fm_libsvm" LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = tempfile.gettempdir() save_path = LOCAL_FS + TMP_PATH + "/model" log_path = LOCAL_FS + TMP_PATH + "/LRlog" # Set trainning data path self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, input_path) # Set save model path self.conf.set(AngelConf.ANGEL_SAVE_MODEL_PATH, save_path) # Set log path self.conf.set(AngelConf.ANGEL_LOG_PATH, log_path) # Set actionType train self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_TRAIN()) runner = FMRunner() runner.train(self.conf) angel_client = AngelClientFactory.get(self.conf) angel_client.stop()
def inc_train(self): self.set_conf() input_path = "../data/exampledata/LinearRegression/LinearReg100.train" LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = tempfile.gettempdir() log_path = "./src/test/log" # Set trainning data path self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, inputPath) # Set load model path self.conf.set(AngelConf.ANGEL_LOAD_MODEL_PATH, LOCAL_FS + TMP_PATH + "/model") # Set save model path self.conf.set(AngelConf.ANGEL_SAVE_MODEL_PATH, LOCAL_FS + TMP_PATH + "/newmodel") # Set actionType incremental train self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_INC_TRAIN()) # Set log path self.conf.set(AngelConf.ANGEL_LOG_PATH, logPath) runner = LinearRegRunner() runner.incTrain(self.conf)
def predict(self): self.set_conf() input_path = "../data/exampledata/LRLocalExampleData/a9a.test" LOCAL_FS = LocalFileSystem.DEFAULT_FS TMP_PATH = System.getProperty("java.io.tmpdir", "/tmp") load_path = LOCAL_FS + TMP_PATH + "/model" save_path = LOCAL_FS + TMP_PATH + "/model" log_path = LOCAL_FS + TMP_PATH + "/log" predict_path = LOCAL_FS + TMP_PATH + "/predict" # Set trainning data path self.conf.set(AngelConf.ANGEL_TRAIN_DATA_PATH, input_path) # Set load model path self.conf.set(AngelConf.ANGEL_LOAD_MODEL_PATH, load_path) # Set predict result path self.conf.set(AngelConf.ANGEL_PREDICT_PATH, predict_path) # Set log path self.conf.set(AngelConf.ANGEL_LOG_PATH, log_path) # Set actionType prediction self.conf.set(AngelConf.ANGEL_ACTION_TYPE, MLConf.ANGEL_ML_PREDICT()) runner = LRRunner() runner.predict(self.conf)
def __init__(self): self.conf = Configuration() self.MLConf = MLConf()