Ejemplo n.º 1
0
    def test_float_nulls(self):
        num_values = 100

        null_mask = np.random.randint(0, 10, size=num_values) < 3
        dtypes = [('f4', A.float_()), ('f8', A.double())]
        names = ['f4', 'f8']
        expected_cols = []

        arrays = []
        fields = []
        for name, arrow_dtype in dtypes:
            values = np.random.randn(num_values).astype(name)

            arr = A.from_pandas_series(values, null_mask)
            arrays.append(arr)
            fields.append(A.Field.from_py(name, arrow_dtype))
            values[null_mask] = np.nan

            expected_cols.append(values)

        ex_frame = pd.DataFrame(dict(zip(names, expected_cols)),
                                columns=names)

        table = A.Table.from_arrays(arrays, names)
        assert table.schema.equals(A.Schema.from_fields(fields))
        result = table.to_pandas()
        tm.assert_frame_equal(result, ex_frame)
Ejemplo n.º 2
0
    def test_float_nulls(self):
        num_values = 100

        null_mask = np.random.randint(0, 10, size=num_values) < 3
        dtypes = [('f4', A.float_()), ('f8', A.double())]
        names = ['f4', 'f8']
        expected_cols = []

        arrays = []
        fields = []
        for name, arrow_dtype in dtypes:
            values = np.random.randn(num_values).astype(name)

            arr = A.from_pandas_series(values, null_mask)
            arrays.append(arr)
            fields.append(A.Field.from_py(name, arrow_dtype))
            values[null_mask] = np.nan

            expected_cols.append(values)

        ex_frame = pd.DataFrame(dict(zip(names, expected_cols)),
                                columns=names)

        table = A.Table.from_arrays(names, arrays)
        assert table.schema.equals(A.Schema.from_fields(fields))
        result = table.to_pandas()
        tm.assert_frame_equal(result, ex_frame)
Ejemplo n.º 3
0
def dataframe_with_arrays():
    """
    Dataframe with numpy arrays columns of every possible primtive type.

    Returns
    -------
    df: pandas.DataFrame
    schema: pyarrow.Schema
        Arrow schema definition that is in line with the constructed df.
    """
    dtypes = [('i1', pa.int8()), ('i2', pa.int16()),
              ('i4', pa.int32()), ('i8', pa.int64()),
              ('u1', pa.uint8()), ('u2', pa.uint16()),
              ('u4', pa.uint32()), ('u8', pa.uint64()),
              ('f4', pa.float_()), ('f8', pa.double())]

    arrays = OrderedDict()
    fields = []
    for dtype, arrow_dtype in dtypes:
        fields.append(pa.field(dtype, pa.list_(arrow_dtype)))
        arrays[dtype] = [
            np.arange(10, dtype=dtype),
            np.arange(5, dtype=dtype),
            None,
            np.arange(1, dtype=dtype)
        ]

    fields.append(pa.field('str', pa.list_(pa.string())))
    arrays['str'] = [
        np.array([u"1", u"ä"], dtype="object"),
        None,
        np.array([u"1"], dtype="object"),
        np.array([u"1", u"2", u"3"], dtype="object")
    ]

    fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms'))))
    arrays['datetime64'] = [
        np.array(['2007-07-13T01:23:34.123456789',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
        None,
        None,
        np.array(['2007-07-13T02',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
    ]

    df = pd.DataFrame(arrays)
    schema = pa.Schema.from_fields(fields)

    return df, schema
Ejemplo n.º 4
0
    def test_float_no_nulls(self):
        data = {}
        fields = []
        dtypes = [('f4', A.float_()), ('f8', A.double())]
        num_values = 100

        for numpy_dtype, arrow_dtype in dtypes:
            values = np.random.randn(num_values)
            data[numpy_dtype] = values.astype(numpy_dtype)
            fields.append(A.Field.from_py(numpy_dtype, arrow_dtype))

        df = pd.DataFrame(data)
        schema = A.Schema.from_fields(fields)
        self._check_pandas_roundtrip(df, expected_schema=schema)
Ejemplo n.º 5
0
    def test_float_no_nulls(self):
        data = {}
        fields = []
        dtypes = [('f4', A.float_()), ('f8', A.double())]
        num_values = 100

        for numpy_dtype, arrow_dtype in dtypes:
            values = np.random.randn(num_values)
            data[numpy_dtype] = values.astype(numpy_dtype)
            fields.append(A.Field.from_py(numpy_dtype, arrow_dtype))

        df = pd.DataFrame(data)
        schema = A.Schema.from_fields(fields)
        self._check_pandas_roundtrip(df, expected_schema=schema)