def test_model_solver_dae_events_casadi(self): # Create model model = pybamm.BaseModel() for use_jacobian in [True, False]: model.use_jacobian = use_jacobian model.convert_to_format = "casadi" whole_cell = [ "negative electrode", "separator", "positive electrode" ] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) model.rhs = {var1: 0.1 * var1} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), ] disc = get_discretisation_for_testing() model_disc = disc.process_model(model, inplace=False) # Solve solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model_disc, t_eval) np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[-1], 2.5) np.testing.assert_allclose(solution.y[0], np.exp(0.1 * solution.t)) np.testing.assert_allclose(solution.y[-1], 2 * np.exp(0.1 * solution.t))
def test_model_solver_dae_events_python(self): model = pybamm.BaseModel() model.convert_to_format = "python" whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) model.rhs = {var1: 0.1 * var1} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), ] disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8, root_method="lm") t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[-1], 2.5) np.testing.assert_allclose(solution.y[0], np.exp(0.1 * solution.t)) np.testing.assert_allclose(solution.y[-1], 2 * np.exp(0.1 * solution.t))
def test_model_solver_ode_events_casadi(self): # Create model model = pybamm.BaseModel() model.convert_to_format = "casadi" whole_cell = ["negative electrode", "separator", "positive electrode"] var = pybamm.Variable("var", domain=whole_cell) model.rhs = {var: 0.1 * var} model.initial_conditions = {var: 1} model.events = [ pybamm.Event("2 * var = 2.5", pybamm.min(2 * var - 2.5)), pybamm.Event("var = 1.5", pybamm.min(var - 1.5)), ] disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.ScikitsOdeSolver(rtol=1e-9, atol=1e-9) t_eval = np.linspace(0, 10, 100) solution = solver.solve(model, t_eval) np.testing.assert_allclose(solution.y[0], np.exp(0.1 * solution.t)) np.testing.assert_array_less(solution.y[0:, -1], 1.5) np.testing.assert_array_less(solution.y[0:, -1], 1.25 + 1e-6) np.testing.assert_equal(solution.t_event[0], solution.t[-1]) np.testing.assert_array_equal(solution.y_event[:, 0], solution.y[:, -1])
def test_model_solver_with_event_python(self): # Create model model = pybamm.BaseModel() model.convert_to_format = "python" domain = ["negative electrode", "separator", "positive electrode"] var = pybamm.Variable("var", domain=domain) model.rhs = {var: -0.1 * var} model.initial_conditions = {var: 1} # needs to work with multiple events (to avoid bug where only last event is # used) model.events = [ pybamm.Event("var=0.5", pybamm.min(var - 0.5)), pybamm.Event("var=-0.5", pybamm.min(var + 0.5)), ] # No need to set parameters; can use base discretisation (no spatial operators) # create discretisation mesh = get_mesh_for_testing() spatial_methods = {"macroscale": pybamm.FiniteVolume()} disc = pybamm.Discretisation(mesh, spatial_methods) disc.process_model(model) # Solve solver = pybamm.ScipySolver(rtol=1e-8, atol=1e-8, method="RK45") t_eval = np.linspace(0, 10, 100) solution = solver.solve(model, t_eval) self.assertLess(len(solution.t), len(t_eval)) np.testing.assert_array_equal(solution.t, t_eval[:len(solution.t)]) np.testing.assert_allclose(solution.y[0], np.exp(-0.1 * solution.t))
def test_model_step_events(self): # Create model model = pybamm.BaseModel() var1 = pybamm.Variable("var1") var2 = pybamm.Variable("var2") model.rhs = {var1: 0.1 * var1} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), ] disc = pybamm.Discretisation() disc.process_model(model) # Solve step_solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8) dt = 0.05 time = 0 end_time = 5 step_solution = None while time < end_time: step_solution = step_solver.step(step_solution, model, dt=dt, npts=10) time += dt np.testing.assert_array_less(step_solution.y[0], 1.5) np.testing.assert_array_less(step_solution.y[-1], 2.5001) np.testing.assert_array_almost_equal(step_solution.y[0], np.exp(0.1 * step_solution.t), decimal=5) np.testing.assert_array_almost_equal(step_solution.y[-1], 2 * np.exp(0.1 * step_solution.t), decimal=5)
def test_model_solver_events(self): # Create model model = pybamm.BaseModel() whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) model.rhs = {var1: 0.1 * var1} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), ] disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.CasadiSolver(rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[-1], 2.5) np.testing.assert_array_almost_equal(solution.y[0], np.exp(0.1 * solution.t), decimal=5) np.testing.assert_array_almost_equal(solution.y[-1], 2 * np.exp(0.1 * solution.t), decimal=5)
def test_solver_doesnt_support_events(self): # Create model model = pybamm.BaseModel() model.convert_to_format = "jax" domain = ["negative electrode", "separator", "positive electrode"] var = pybamm.Variable("var", domain=domain) model.rhs = {var: -0.1 * var} model.initial_conditions = {var: 1} # needs to work with multiple events (to avoid bug where only last event is # used) model.events = [ pybamm.Event("var=0.5", pybamm.min(var - 0.5)), pybamm.Event("var=-0.5", pybamm.min(var + 0.5)), ] # No need to set parameters; can use base discretisation (no spatial operators) # create discretisation mesh = get_mesh_for_testing() spatial_methods = {"macroscale": pybamm.FiniteVolume()} disc = pybamm.Discretisation(mesh, spatial_methods) disc.process_model(model) # Solve solver = pybamm.JaxSolver() t_eval = np.linspace(0, 10, 100) with self.assertRaisesRegex(RuntimeError, "Terminate events not supported"): solver.solve(model, t_eval)
def test_model_solver_dae_inputs_events(self): # Create model for form in ["python", "casadi"]: model = pybamm.BaseModel() model.convert_to_format = form whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) model.rhs = {var1: pybamm.InputParameter("rate 1") * var1} model.algebraic = {var2: pybamm.InputParameter("rate 2") * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), ] disc = get_discretisation_for_testing() disc.process_model(model) # Solve if form == "python": solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8, root_method="lm") else: solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval, inputs={"rate 1": 0.1, "rate 2": 2}) np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[-1], 2.5) np.testing.assert_allclose(solution.y[0], np.exp(0.1 * solution.t)) np.testing.assert_allclose(solution.y[-1], 2 * np.exp(0.1 * solution.t))
def set_events(self, variables): eps_n = variables["Negative electrode porosity"] eps_p = variables["Positive electrode porosity"] self.events.append( pybamm.Event( "Zero negative electrode porosity cut-off", pybamm.min(eps_n), pybamm.EventType.TERMINATION, )) self.events.append( pybamm.Event( "Max negative electrode porosity cut-off", pybamm.max(eps_n) - 1, pybamm.EventType.TERMINATION, )) self.events.append( pybamm.Event( "Zero positive electrode porosity cut-off", pybamm.min(eps_p), pybamm.EventType.TERMINATION, )) self.events.append( pybamm.Event( "Max positive electrode porosity cut-off", pybamm.max(eps_p) - 1, pybamm.EventType.TERMINATION, ))
def test_model_step_nonsmooth_events(self): # Create model model = pybamm.BaseModel() model.timescale = pybamm.Scalar(1) var1 = pybamm.Variable("var1") var2 = pybamm.Variable("var2") a = 0.6 discontinuities = (np.arange(3) + 1) * a model.rhs = {var1: pybamm.Modulo(pybamm.t * model.timescale, a)} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 0, var2: 0} model.events = [ pybamm.Event("var1 = 0.55", pybamm.min(var1 - 0.55)), pybamm.Event("var2 = 1.2", pybamm.min(var2 - 1.2)), ] for discontinuity in discontinuities: model.events.append( pybamm.Event("nonsmooth rate", pybamm.Scalar(discontinuity))) disc = get_discretisation_for_testing() disc.process_model(model) # Solve step_solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8) dt = 0.05 time = 0 end_time = 3 step_solution = None while time < end_time: step_solution = step_solver.step(step_solution, model, dt=dt, npts=10) time += dt np.testing.assert_array_less(step_solution.y[0, :-1], 0.55) np.testing.assert_array_less(step_solution.y[-1, :-1], 1.2) np.testing.assert_equal(step_solution.t_event[0], step_solution.t[-1]) np.testing.assert_array_equal(step_solution.y_event[:, 0], step_solution.y[:, -1]) var1_soln = (step_solution.t % a)**2 / 2 + a**2 / 2 * (step_solution.t // a) var2_soln = 2 * var1_soln np.testing.assert_array_almost_equal(step_solution.y[0], var1_soln, decimal=5) np.testing.assert_array_almost_equal(step_solution.y[-1], var2_soln, decimal=5)
def test_model_solver_with_inputs(self): # Create model model = pybamm.BaseModel() domain = ["negative electrode", "separator", "positive electrode"] var = pybamm.Variable("var", domain=domain) model.rhs = {var: -pybamm.InputParameter("rate") * var} model.initial_conditions = {var: 1} model.events = [pybamm.Event("var=0.5", pybamm.min(var - 0.5))] # No need to set parameters; can use base discretisation (no spatial # operators) # create discretisation mesh = get_mesh_for_testing() spatial_methods = {"macroscale": pybamm.FiniteVolume()} disc = pybamm.Discretisation(mesh, spatial_methods) disc.process_model(model) # Solve solver = pybamm.CasadiSolver(rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 10, 100) solution = solver.solve(model, t_eval, inputs={"rate": 0.1}) self.assertLess(len(solution.t), len(t_eval)) np.testing.assert_allclose(solution.y[0], np.exp(-0.1 * solution.t), rtol=1e-04) # Without grid solver = pybamm.CasadiSolver(mode="safe without grid", rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 10, 100) solution = solver.solve(model, t_eval, inputs={"rate": 0.1}) self.assertLess(len(solution.t), len(t_eval)) np.testing.assert_allclose(solution.y[0], np.exp(-0.1 * solution.t), rtol=1e-04) solution = solver.solve(model, t_eval, inputs={"rate": 1.1}) self.assertLess(len(solution.t), len(t_eval)) np.testing.assert_allclose(solution.y[0], np.exp(-1.1 * solution.t), rtol=1e-04)
def test_model_solver_with_event_with_casadi(self): # Create model model = pybamm.BaseModel() for use_jacobian in [True, False]: model.use_jacobian = use_jacobian model.convert_to_format = "casadi" domain = ["negative electrode", "separator", "positive electrode"] var = pybamm.Variable("var", domain=domain) model.rhs = {var: -0.1 * var} model.initial_conditions = {var: 1} model.events = {"var=0.5": pybamm.min(var - 0.5)} # No need to set parameters; can use base discretisation (no spatial # operators) # create discretisation mesh = get_mesh_for_testing() spatial_methods = {"macroscale": pybamm.FiniteVolume} disc = pybamm.Discretisation(mesh, spatial_methods) disc.process_model(model) # Solve solver = pybamm.ScipySolver(rtol=1e-8, atol=1e-8, method="RK45") t_eval = np.linspace(0, 10, 100) solution = solver.solve(model, t_eval) self.assertLess(len(solution.t), len(t_eval)) np.testing.assert_array_equal(solution.t, t_eval[:len(solution.t)]) np.testing.assert_allclose(solution.y[0], np.exp(-0.1 * solution.t))
def test_special_functions(self): a = pybamm.Array(np.array([1, 2, 3, 4, 5])) self.assert_casadi_equal(pybamm.max(a).to_casadi(), casadi.MX(5), evalf=True) self.assert_casadi_equal(pybamm.min(a).to_casadi(), casadi.MX(1), evalf=True) b = pybamm.Array(np.array([-2])) c = pybamm.Array(np.array([3])) self.assert_casadi_equal(pybamm.Function(np.abs, b).to_casadi(), casadi.MX(2), evalf=True) self.assert_casadi_equal(pybamm.Function(np.abs, c).to_casadi(), casadi.MX(3), evalf=True) for np_fun in [ np.sqrt, np.tanh, np.cosh, np.sinh, np.exp, np.log, np.sign, np.sin, np.cos, np.arccosh, np.arcsinh, ]: self.assert_casadi_equal(pybamm.Function(np_fun, c).to_casadi(), casadi.MX(np_fun(3)), evalf=True)
def test_special_functions(self): a = pybamm.Array(np.array([1, 2, 3, 4, 5])) self.assertEqual(pybamm.max(a).to_casadi(), casadi.SX(5)) self.assertEqual(pybamm.min(a).to_casadi(), casadi.SX(1)) b = pybamm.Array(np.array([-2])) c = pybamm.Array(np.array([3])) self.assertEqual(pybamm.Function(np.abs, b).to_casadi(), casadi.SX(2)) self.assertEqual(pybamm.Function(np.abs, c).to_casadi(), casadi.SX(3))
def set_events(self, variables): c_e = variables["Electrolyte concentration"] self.events.append( pybamm.Event( "Zero electrolyte concentration cut-off", pybamm.min(c_e) - 0.002, pybamm.EventType.TERMINATION, ))
def set_events(self, variables): c_s_surf = variables[self.domain + " particle surface concentration"] tol = 0.01 self.events["Minumum " + self.domain.lower() + " particle surface concentration"] = ( pybamm.min(c_s_surf) - tol) self.events["Maximum " + self.domain.lower() + " particle surface concentration"] = ( 1 - tol) - pybamm.max(c_s_surf)
def test_model_solver_ode_events(self): # Create model model = pybamm.BaseModel() whole_cell = ["negative electrode", "separator", "positive electrode"] var = pybamm.Variable("var", domain=whole_cell) model.rhs = {var: 0.1 * var} model.initial_conditions = {var: 1} model.events = { "2 * var = 2.5": pybamm.min(2 * var - 2.5), "var = 1.5": pybamm.min(var - 1.5), } disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.ScikitsOdeSolver(rtol=1e-9, atol=1e-9) t_eval = np.linspace(0, 10, 100) solution = solver.solve(model, t_eval) np.testing.assert_allclose(solution.y[0], np.exp(0.1 * solution.t)) np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[0], 1.25)
def test_special_functions(self): a = pybamm.Array(np.array([1, 2, 3, 4, 5])) self.assert_casadi_equal(pybamm.max(a).to_casadi(), casadi.MX(5), evalf=True) self.assert_casadi_equal(pybamm.min(a).to_casadi(), casadi.MX(1), evalf=True) b = pybamm.Array(np.array([-2])) c = pybamm.Array(np.array([3])) self.assert_casadi_equal(pybamm.Function(np.abs, b).to_casadi(), casadi.MX(2), evalf=True) self.assert_casadi_equal(pybamm.Function(np.abs, c).to_casadi(), casadi.MX(3), evalf=True)
def set_events(self, variables): c_s_surf = variables[self.domain + " particle surface concentration"] tol = 0.01 self.events.append( pybamm.Event( "Minumum " + self.domain.lower() + " particle surface concentration", pybamm.min(c_s_surf) - tol, pybamm.EventType.TERMINATION, )) self.events.append( pybamm.Event( "Maximum " + self.domain.lower() + " particle surface concentration", (1 - tol) - pybamm.max(c_s_surf), pybamm.EventType.TERMINATION, ))
def test_min(self): a = pybamm.Vector(np.array([1, 2, 3])) fun = pybamm.min(a) self.assertIsInstance(fun, pybamm.Function) self.assertEqual(fun.evaluate(), 1)
def __init__(self, name="Doyle-Fuller-Newman half cell model", options=None): super().__init__({}, name) pybamm.citations.register("marquis2019asymptotic") # `param` is a class containing all the relevant parameters and functions for # this model. These are purely symbolic at this stage, and will be set by the # `ParameterValues` class when the model is processed. param = self.param options = options or {"working electrode": None} if options["working electrode"] not in ["negative", "positive"]: raise ValueError( "The option 'working electrode' should be either 'positive'" " or 'negative'" ) self.options.update(options) working_electrode = options["working electrode"] ###################### # Variables ###################### # Variables that depend on time only are created without a domain Q = pybamm.Variable("Discharge capacity [A.h]") # Define some useful scalings pot = param.potential_scale i_typ = param.current_scale # Variables that vary spatially are created with a domain. Depending on # which is the working electrode we need to define a set variables or another if working_electrode == "negative": # Electrolyte concentration c_e_n = pybamm.Variable( "Negative electrolyte concentration", domain="negative electrode" ) c_e_s = pybamm.Variable( "Separator electrolyte concentration", domain="separator" ) # Concatenations combine several variables into a single variable, to # simplify implementing equations that hold over several domains c_e = pybamm.Concatenation(c_e_n, c_e_s) # Electrolyte potential phi_e_n = pybamm.Variable( "Negative electrolyte potential", domain="negative electrode" ) phi_e_s = pybamm.Variable( "Separator electrolyte potential", domain="separator" ) phi_e = pybamm.Concatenation(phi_e_n, phi_e_s) # Particle concentrations are variables on the particle domain, but also # vary in the x-direction (electrode domain) and so must be provided with # auxiliary domains c_s_n = pybamm.Variable( "Negative particle concentration", domain="negative particle", auxiliary_domains={"secondary": "negative electrode"}, ) # Set concentration in positive particle to be equal to the initial # concentration as it is not the working electrode x_p = pybamm.PrimaryBroadcast( pybamm.standard_spatial_vars.x_p, "positive particle" ) c_s_p = param.c_n_init(x_p) # Electrode potential phi_s_n = pybamm.Variable( "Negative electrode potential", domain="negative electrode" ) # Set potential in positive electrode to be equal to the initial OCV phi_s_p = param.U_p(pybamm.surf(param.c_p_init(x_p)), param.T_init) else: c_e_p = pybamm.Variable( "Positive electrolyte concentration", domain="positive electrode" ) c_e_s = pybamm.Variable( "Separator electrolyte concentration", domain="separator" ) # Concatenations combine several variables into a single variable, to # simplify implementing equations that hold over several domains c_e = pybamm.Concatenation(c_e_s, c_e_p) # Electrolyte potential phi_e_s = pybamm.Variable( "Separator electrolyte potential", domain="separator" ) phi_e_p = pybamm.Variable( "Positive electrolyte potential", domain="positive electrode" ) phi_e = pybamm.Concatenation(phi_e_s, phi_e_p) # Particle concentrations are variables on the particle domain, but also # vary in the x-direction (electrode domain) and so must be provided with # auxiliary domains c_s_p = pybamm.Variable( "Positive particle concentration", domain="positive particle", auxiliary_domains={"secondary": "positive electrode"}, ) # Set concentration in negative particle to be equal to the initial # concentration as it is not the working electrode x_n = pybamm.PrimaryBroadcast( pybamm.standard_spatial_vars.x_n, "negative particle" ) c_s_n = param.c_n_init(x_n) # Electrode potential phi_s_p = pybamm.Variable( "Positive electrode potential", domain="positive electrode" ) # Set potential in negative electrode to be equal to the initial OCV phi_s_n = param.U_n(pybamm.surf(param.c_n_init(x_n)), param.T_init) # Constant temperature T = param.T_init ###################### # Other set-up ###################### # Current density i_cell = param.current_with_time # Porosity and Tortuosity # Primary broadcasts are used to broadcast scalar quantities across a domain # into a vector of the right shape, for multiplying with other vectors eps_n = pybamm.PrimaryBroadcast( pybamm.Parameter("Negative electrode porosity"), "negative electrode" ) eps_s = pybamm.PrimaryBroadcast( pybamm.Parameter("Separator porosity"), "separator" ) eps_p = pybamm.PrimaryBroadcast( pybamm.Parameter("Positive electrode porosity"), "positive electrode" ) if working_electrode == "negative": eps = pybamm.Concatenation(eps_n, eps_s) tor = pybamm.Concatenation(eps_n ** param.b_e_n, eps_s ** param.b_e_s) else: eps = pybamm.Concatenation(eps_s, eps_p) tor = pybamm.Concatenation(eps_s ** param.b_e_s, eps_p ** param.b_e_p) # Interfacial reactions # Surf takes the surface value of a variable, i.e. its boundary value on the # right side. This is also accessible via `boundary_value(x, "right")`, with # "left" providing the boundary value of the left side c_s_surf_n = pybamm.surf(c_s_n) c_s_surf_p = pybamm.surf(c_s_p) if working_electrode == "negative": j0_n = param.j0_n(c_e_n, c_s_surf_n, T) / param.C_r_n j_n = ( 2 * j0_n * pybamm.sinh( param.ne_n / 2 * (phi_s_n - phi_e_n - param.U_n(c_s_surf_n, T)) ) ) j_s = pybamm.PrimaryBroadcast(0, "separator") j_p = pybamm.PrimaryBroadcast(0, "positive electrode") j = pybamm.Concatenation(j_n, j_s) else: j0_p = param.gamma_p * param.j0_p(c_e_p, c_s_surf_p, T) / param.C_r_p j_p = ( 2 * j0_p * pybamm.sinh( param.ne_p / 2 * (phi_s_p - phi_e_p - param.U_p(c_s_surf_p, T)) ) ) j_s = pybamm.PrimaryBroadcast(0, "separator") j_n = pybamm.PrimaryBroadcast(0, "negative electrode") j = pybamm.Concatenation(j_s, j_p) ###################### # State of Charge ###################### I = param.dimensional_current_with_time # The `rhs` dictionary contains differential equations, with the key being the # variable in the d/dt self.rhs[Q] = I * param.timescale / 3600 # Initial conditions must be provided for the ODEs self.initial_conditions[Q] = pybamm.Scalar(0) ###################### # Particles ###################### if working_electrode == "negative": # The div and grad operators will be converted to the appropriate matrix # multiplication at the discretisation stage N_s_n = -param.D_n(c_s_n, T) * pybamm.grad(c_s_n) self.rhs[c_s_n] = -(1 / param.C_n) * pybamm.div(N_s_n) # Boundary conditions must be provided for equations with spatial # derivatives self.boundary_conditions[c_s_n] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( -param.C_n * j_n / param.a_R_n / param.D_n(c_s_surf_n, T), "Neumann", ), } # c_n_init can in general be a function of x # Note the broadcasting, for domains x_n = pybamm.PrimaryBroadcast( pybamm.standard_spatial_vars.x_n, "negative particle" ) self.initial_conditions[c_s_n] = param.c_n_init(x_n) # Events specify points at which a solution should terminate self.events += [ pybamm.Event( "Minimum negative particle surface concentration", pybamm.min(c_s_surf_n) - 0.01, ), pybamm.Event( "Maximum negative particle surface concentration", (1 - 0.01) - pybamm.max(c_s_surf_n), ), ] else: # The div and grad operators will be converted to the appropriate matrix # multiplication at the discretisation stage N_s_p = -param.D_p(c_s_p, T) * pybamm.grad(c_s_p) self.rhs[c_s_p] = -(1 / param.C_p) * pybamm.div(N_s_p) # Boundary conditions must be provided for equations with spatial # derivatives self.boundary_conditions[c_s_p] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( -param.C_p * j_p / param.a_R_p / param.gamma_p / param.D_p(c_s_surf_p, T), "Neumann", ), } # c_p_init can in general be a function of x # Note the broadcasting, for domains x_p = pybamm.PrimaryBroadcast( pybamm.standard_spatial_vars.x_p, "positive particle" ) self.initial_conditions[c_s_p] = param.c_p_init(x_p) # Events specify points at which a solution should terminate self.events += [ pybamm.Event( "Minimum positive particle surface concentration", pybamm.min(c_s_surf_p) - 0.01, ), pybamm.Event( "Maximum positive particle surface concentration", (1 - 0.01) - pybamm.max(c_s_surf_p), ), ] ###################### # Current in the solid ###################### eps_s_n = pybamm.Parameter("Negative electrode active material volume fraction") eps_s_p = pybamm.Parameter("Positive electrode active material volume fraction") if working_electrode == "negative": sigma_eff_n = param.sigma_n * eps_s_n ** param.b_s_n i_s_n = -sigma_eff_n * pybamm.grad(phi_s_n) self.boundary_conditions[phi_s_n] = { "left": ( i_cell / pybamm.boundary_value(-sigma_eff_n, "left"), "Neumann", ), "right": (pybamm.Scalar(0), "Neumann"), } # The `algebraic` dictionary contains differential equations, with the key # being the main scalar variable of interest in the equation self.algebraic[phi_s_n] = pybamm.div(i_s_n) + j_n # Initial conditions must also be provided for algebraic equations, as an # initial guess for a root-finding algorithm which calculates consistent # initial conditions self.initial_conditions[phi_s_n] = param.U_n( param.c_n_init(0), param.T_init ) else: sigma_eff_p = param.sigma_p * eps_s_p ** param.b_s_p i_s_p = -sigma_eff_p * pybamm.grad(phi_s_p) self.boundary_conditions[phi_s_p] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( i_cell / pybamm.boundary_value(-sigma_eff_p, "right"), "Neumann", ), } self.algebraic[phi_s_p] = pybamm.div(i_s_p) + j_p # Initial conditions must also be provided for algebraic equations, as an # initial guess for a root-finding algorithm which calculates consistent # initial conditions self.initial_conditions[phi_s_p] = param.U_p( param.c_p_init(1), param.T_init ) ###################### # Electrolyte concentration ###################### N_e = -tor * param.D_e(c_e, T) * pybamm.grad(c_e) self.rhs[c_e] = (1 / eps) * ( -pybamm.div(N_e) / param.C_e + (1 - param.t_plus(c_e)) * j / param.gamma_e ) dce_dx = ( -(1 - param.t_plus(c_e)) * i_cell * param.C_e / (tor * param.gamma_e * param.D_e(c_e, T)) ) if working_electrode == "negative": self.boundary_conditions[c_e] = { "left": (pybamm.Scalar(0), "Neumann"), "right": (pybamm.boundary_value(dce_dx, "right"), "Neumann"), } else: self.boundary_conditions[c_e] = { "left": (pybamm.boundary_value(dce_dx, "left"), "Neumann"), "right": (pybamm.Scalar(0), "Neumann"), } self.initial_conditions[c_e] = param.c_e_init self.events.append( pybamm.Event( "Zero electrolyte concentration cut-off", pybamm.min(c_e) - 0.002 ) ) ###################### # Current in the electrolyte ###################### i_e = (param.kappa_e(c_e, T) * tor * param.gamma_e / param.C_e) * ( param.chi(c_e, T) * pybamm.grad(c_e) / c_e - pybamm.grad(phi_e) ) self.algebraic[phi_e] = pybamm.div(i_e) - j ref_potential = param.U_n_ref / pot if working_electrode == "negative": self.boundary_conditions[phi_e] = { "left": (pybamm.Scalar(0), "Neumann"), "right": (ref_potential, "Dirichlet"), } else: self.boundary_conditions[phi_e] = { "left": (ref_potential, "Dirichlet"), "right": (pybamm.Scalar(0), "Neumann"), } self.initial_conditions[phi_e] = ref_potential ###################### # (Some) variables ###################### L_Li = pybamm.Parameter("Lithium counter electrode thickness [m]") sigma_Li = pybamm.Parameter("Lithium counter electrode conductivity [S.m-1]") j_Li = pybamm.Parameter( "Lithium counter electrode exchange-current density [A.m-2]" ) if working_electrode == "negative": voltage = pybamm.boundary_value(phi_s_n, "left") - ref_potential voltage_dim = pot * pybamm.boundary_value(phi_s_n, "left") vdrop_Li = 2 * pybamm.arcsinh( i_cell * i_typ / j_Li ) + L_Li * i_typ * i_cell / (sigma_Li * pot) vdrop_Li_dim = ( 2 * pot * pybamm.arcsinh(i_cell * i_typ / j_Li) + L_Li * i_typ * i_cell / sigma_Li ) else: voltage = pybamm.boundary_value(phi_s_p, "right") - ref_potential voltage_dim = param.U_p_ref + pot * voltage vdrop_Li = -( 2 * pybamm.arcsinh(i_cell * i_typ / j_Li) + L_Li * i_typ * i_cell / (sigma_Li * pot) ) vdrop_Li_dim = -( 2 * pot * pybamm.arcsinh(i_cell * i_typ / j_Li) + L_Li * i_typ * i_cell / sigma_Li ) c_s_surf_p_av = pybamm.x_average(c_s_surf_p) c_s_surf_n_av = pybamm.x_average(c_s_surf_n) # The `variables` dictionary contains all variables that might be useful for # visualising the solution of the model self.variables = { "Time [s]": param.timescale * pybamm.t, "Negative particle surface concentration": c_s_surf_n, "X-averaged negative particle surface concentration": c_s_surf_n_av, "Negative particle concentration": c_s_n, "Negative particle surface concentration [mol.m-3]": param.c_n_max * c_s_surf_n, "X-averaged negative particle surface concentration " "[mol.m-3]": param.c_n_max * c_s_surf_n_av, "Negative particle concentration [mol.m-3]": param.c_n_max * c_s_n, "Electrolyte concentration": c_e, "Electrolyte concentration [mol.m-3]": param.c_e_typ * c_e, "Positive particle surface concentration": c_s_surf_p, "X-averaged positive particle surface concentration": c_s_surf_p_av, "Positive particle concentration": c_s_p, "Positive particle surface concentration [mol.m-3]": param.c_p_max * c_s_surf_p, "X-averaged positive particle surface concentration " "[mol.m-3]": param.c_p_max * c_s_surf_p_av, "Positive particle concentration [mol.m-3]": param.c_p_max * c_s_p, "Current [A]": I, "Negative electrode potential": phi_s_n, "Negative electrode potential [V]": pot * phi_s_n, "Negative electrode open circuit potential": param.U_n(c_s_surf_n, T), "Electrolyte potential": phi_e, "Electrolyte potential [V]": -param.U_n_ref + pot * phi_e, "Positive electrode potential": phi_s_p, "Positive electrode potential [V]": (param.U_p_ref - param.U_n_ref) + pot * phi_s_p, "Positive electrode open circuit potential": param.U_p(c_s_surf_p, T), "Voltage drop": voltage, "Voltage drop [V]": voltage_dim, "Terminal voltage": voltage + vdrop_Li, "Terminal voltage [V]": voltage_dim + vdrop_Li_dim, }
def test_model_solver_events(self): # Create model model = pybamm.BaseModel() whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) model.rhs = {var1: 0.1 * var1} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), ] disc = get_discretisation_for_testing() disc.process_model(model) # Solve using "safe" mode solver = pybamm.CasadiSolver(mode="safe", rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y.full()[0, :-1], 1.5) np.testing.assert_array_less(solution.y.full()[-1, :-1], 2.5) np.testing.assert_equal(solution.t_event[0], solution.t[-1]) np.testing.assert_array_equal(solution.y_event[:, 0], solution.y.full()[:, -1]) np.testing.assert_array_almost_equal(solution.y.full()[0], np.exp(0.1 * solution.t), decimal=5) np.testing.assert_array_almost_equal(solution.y.full()[-1], 2 * np.exp(0.1 * solution.t), decimal=5) # Solve using "safe" mode with debug off pybamm.settings.debug_mode = False solver = pybamm.CasadiSolver(mode="safe", rtol=1e-8, atol=1e-8, dt_max=1) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y.full()[0], 1.5) np.testing.assert_array_less(solution.y.full()[-1], 2.5 + 1e-10) # test the last entry is exactly 2.5 np.testing.assert_array_almost_equal(solution.y[-1, -1], 2.5, decimal=2) np.testing.assert_array_almost_equal(solution.y.full()[0], np.exp(0.1 * solution.t), decimal=5) np.testing.assert_array_almost_equal(solution.y.full()[-1], 2 * np.exp(0.1 * solution.t), decimal=5) pybamm.settings.debug_mode = True # Try dt_max=0 to enforce using all timesteps solver = pybamm.CasadiSolver(dt_max=0, rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y.full()[0], 1.5) np.testing.assert_array_less(solution.y.full()[-1], 2.5 + 1e-10) np.testing.assert_array_almost_equal(solution.y.full()[0], np.exp(0.1 * solution.t), decimal=5) np.testing.assert_array_almost_equal(solution.y.full()[-1], 2 * np.exp(0.1 * solution.t), decimal=5) # Solve using "fast with events" mode model = pybamm.BaseModel() var1 = pybamm.Variable("var1") var2 = pybamm.Variable("var2") model.rhs = {var1: 0.1 * var1} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", var1 - 1.5), pybamm.Event("var2 = 2.5", var2 - 2.5), pybamm.Event("var1 = 1.5 switch", var1 - 2, pybamm.EventType.SWITCH), pybamm.Event("var2 = 2.5 switch", var2 - 3, pybamm.EventType.SWITCH), ] solver = pybamm.CasadiSolver(mode="fast with events", rtol=1e-8, atol=1e-8) t_eval = np.linspace(0, 5, 100) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y.full()[0, :-1], 1.5) np.testing.assert_array_less(solution.y.full()[-1, :-1], 2.5) np.testing.assert_equal(solution.t_event[0], solution.t[-1]) np.testing.assert_array_almost_equal(solution.y_event[:, 0].flatten(), [1.25, 2.5], decimal=5) np.testing.assert_array_almost_equal(solution.y.full()[0], np.exp(0.1 * solution.t), decimal=5) np.testing.assert_array_almost_equal(solution.y.full()[-1], 2 * np.exp(0.1 * solution.t), decimal=5) # Test when an event returns nan model = pybamm.BaseModel() var = pybamm.Variable("var") model.rhs = {var: 0.1 * var} model.initial_conditions = {var: 1} model.events = [ pybamm.Event("event", var - 1.02), pybamm.Event("sqrt event", pybamm.sqrt(1.0199 - var)), ] disc = pybamm.Discretisation() disc.process_model(model) solver = pybamm.CasadiSolver(rtol=1e-8, atol=1e-8) solution = solver.solve(model, t_eval) np.testing.assert_array_less(solution.y.full()[0], 1.02 + 1e-10) np.testing.assert_array_almost_equal(solution.y[0, -1], 1.02, decimal=2)
def __init__(self, name="Doyle-Fuller-Newman model"): super().__init__({}, name) # `param` is a class containing all the relevant parameters and functions for # this model. These are purely symbolic at this stage, and will be set by the # `ParameterValues` class when the model is processed. param = self.param ###################### # Variables ###################### # Variables that depend on time only are created without a domain Q = pybamm.Variable("Discharge capacity [A.h]") # Variables that vary spatially are created with a domain c_e_n = pybamm.Variable( "Negative electrolyte concentration", domain="negative electrode", ) c_e_s = pybamm.Variable( "Separator electrolyte concentration", domain="separator", ) c_e_p = pybamm.Variable( "Positive electrolyte concentration", domain="positive electrode", ) # Concatenations combine several variables into a single variable, to simplify # implementing equations that hold over several domains c_e = pybamm.Concatenation(c_e_n, c_e_s, c_e_p) # Electrolyte potential phi_e_n = pybamm.Variable( "Negative electrolyte potential", domain="negative electrode", ) phi_e_s = pybamm.Variable( "Separator electrolyte potential", domain="separator", ) phi_e_p = pybamm.Variable( "Positive electrolyte potential", domain="positive electrode", ) phi_e = pybamm.Concatenation(phi_e_n, phi_e_s, phi_e_p) # Electrode potential phi_s_n = pybamm.Variable( "Negative electrode potential", domain="negative electrode", ) phi_s_p = pybamm.Variable( "Positive electrode potential", domain="positive electrode", ) # Particle concentrations are variables on the particle domain, but also vary in # the x-direction (electrode domain) and so must be provided with auxiliary # domains c_s_n = pybamm.Variable( "Negative particle concentration", domain="negative particle", auxiliary_domains={"secondary": "negative electrode"}, ) c_s_p = pybamm.Variable( "Positive particle concentration", domain="positive particle", auxiliary_domains={"secondary": "positive electrode"}, ) # Constant temperature T = param.T_init ###################### # Other set-up ###################### # Current density i_cell = param.current_with_time # Porosity # Primary broadcasts are used to broadcast scalar quantities across a domain # into a vector of the right shape, for multiplying with other vectors eps_n = pybamm.PrimaryBroadcast( pybamm.Parameter("Negative electrode porosity"), "negative electrode") eps_s = pybamm.PrimaryBroadcast(pybamm.Parameter("Separator porosity"), "separator") eps_p = pybamm.PrimaryBroadcast( pybamm.Parameter("Positive electrode porosity"), "positive electrode") eps = pybamm.Concatenation(eps_n, eps_s, eps_p) # Tortuosity tor = pybamm.Concatenation(eps_n**param.b_e_n, eps_s**param.b_e_s, eps_p**param.b_e_p) # Interfacial reactions # Surf takes the surface value of a variable, i.e. its boundary value on the # right side. This is also accessible via `boundary_value(x, "right")`, with # "left" providing the boundary value of the left side c_s_surf_n = pybamm.surf(c_s_n) j0_n = (param.m_n(T) / param.C_r_n * c_e_n**(1 / 2) * c_s_surf_n**(1 / 2) * (1 - c_s_surf_n)**(1 / 2)) j_n = (2 * j0_n * pybamm.sinh(param.ne_n / 2 * (phi_s_n - phi_e_n - param.U_n(c_s_surf_n, T)))) c_s_surf_p = pybamm.surf(c_s_p) j0_p = (param.gamma_p * param.m_p(T) / param.C_r_p * c_e_p**(1 / 2) * c_s_surf_p**(1 / 2) * (1 - c_s_surf_p)**(1 / 2)) j_s = pybamm.PrimaryBroadcast(0, "separator") j_p = (2 * j0_p * pybamm.sinh(param.ne_p / 2 * (phi_s_p - phi_e_p - param.U_p(c_s_surf_p, T)))) j = pybamm.Concatenation(j_n, j_s, j_p) ###################### # State of Charge ###################### I = param.dimensional_current_with_time # The `rhs` dictionary contains differential equations, with the key being the # variable in the d/dt self.rhs[Q] = I * param.timescale / 3600 # Initial conditions must be provided for the ODEs self.initial_conditions[Q] = pybamm.Scalar(0) ###################### # Particles ###################### # The div and grad operators will be converted to the appropriate matrix # multiplication at the discretisation stage N_s_n = -param.D_n(c_s_n, T) * pybamm.grad(c_s_n) N_s_p = -param.D_p(c_s_p, T) * pybamm.grad(c_s_p) self.rhs[c_s_n] = -(1 / param.C_n) * pybamm.div(N_s_n) self.rhs[c_s_p] = -(1 / param.C_p) * pybamm.div(N_s_p) # Boundary conditions must be provided for equations with spatial derivatives self.boundary_conditions[c_s_n] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( -param.C_n * j_n / param.a_n / param.D_n(c_s_surf_n, T), "Neumann", ), } self.boundary_conditions[c_s_p] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( -param.C_p * j_p / param.a_p / param.gamma_p / param.D_p(c_s_surf_p, T), "Neumann", ), } # c_n_init and c_p_init can in general be functions of x # Note the broadcasting, for domains x_n = pybamm.PrimaryBroadcast(pybamm.standard_spatial_vars.x_n, "negative particle") self.initial_conditions[c_s_n] = param.c_n_init(x_n) x_p = pybamm.PrimaryBroadcast(pybamm.standard_spatial_vars.x_p, "positive particle") self.initial_conditions[c_s_p] = param.c_p_init(x_p) # Events specify points at which a solution should terminate self.events += [ pybamm.Event( "Minimum negative particle surface concentration", pybamm.min(c_s_surf_n) - 0.01, ), pybamm.Event( "Maximum negative particle surface concentration", (1 - 0.01) - pybamm.max(c_s_surf_n), ), pybamm.Event( "Minimum positive particle surface concentration", pybamm.min(c_s_surf_p) - 0.01, ), pybamm.Event( "Maximum positive particle surface concentration", (1 - 0.01) - pybamm.max(c_s_surf_p), ), ] ###################### # Current in the solid ###################### i_s_n = -param.sigma_n * (1 - eps_n)**param.b_s_n * pybamm.grad(phi_s_n) sigma_eff_p = param.sigma_p * (1 - eps_p)**param.b_s_p i_s_p = -sigma_eff_p * pybamm.grad(phi_s_p) # The `algebraic` dictionary contains differential equations, with the key being # the main scalar variable of interest in the equation self.algebraic[phi_s_n] = pybamm.div(i_s_n) + j_n self.algebraic[phi_s_p] = pybamm.div(i_s_p) + j_p self.boundary_conditions[phi_s_n] = { "left": (pybamm.Scalar(0), "Dirichlet"), "right": (pybamm.Scalar(0), "Neumann"), } self.boundary_conditions[phi_s_p] = { "left": (pybamm.Scalar(0), "Neumann"), "right": (i_cell / pybamm.boundary_value(-sigma_eff_p, "right"), "Neumann"), } # Initial conditions must also be provided for algebraic equations, as an # initial guess for a root-finding algorithm which calculates consistent initial # conditions # We evaluate c_n_init at x=0 and c_p_init at x=1 (this is just an initial # guess so actual value is not too important) self.initial_conditions[phi_s_n] = pybamm.Scalar(0) self.initial_conditions[phi_s_p] = param.U_p( param.c_p_init(1), param.T_init) - param.U_n( param.c_n_init(0), param.T_init) ###################### # Current in the electrolyte ###################### i_e = (param.kappa_e(c_e, T) * tor * param.gamma_e / param.C_e) * ( param.chi(c_e) * pybamm.grad(c_e) / c_e - pybamm.grad(phi_e)) self.algebraic[phi_e] = pybamm.div(i_e) - j self.boundary_conditions[phi_e] = { "left": (pybamm.Scalar(0), "Neumann"), "right": (pybamm.Scalar(0), "Neumann"), } self.initial_conditions[phi_e] = -param.U_n(param.c_n_init(0), param.T_init) ###################### # Electrolyte concentration ###################### N_e = -tor * param.D_e(c_e, T) * pybamm.grad(c_e) self.rhs[c_e] = (1 / eps) * (-pybamm.div(N_e) / param.C_e + (1 - param.t_plus(c_e)) * j / param.gamma_e) self.boundary_conditions[c_e] = { "left": (pybamm.Scalar(0), "Neumann"), "right": (pybamm.Scalar(0), "Neumann"), } self.initial_conditions[c_e] = param.c_e_init self.events.append( pybamm.Event("Zero electrolyte concentration cut-off", pybamm.min(c_e) - 0.002)) ###################### # (Some) variables ###################### voltage = pybamm.boundary_value(phi_s_p, "right") # The `variables` dictionary contains all variables that might be useful for # visualising the solution of the model self.variables = { "Negative particle surface concentration": c_s_surf_n, "Electrolyte concentration": c_e, "Positive particle surface concentration": c_s_surf_p, "Current [A]": I, "Negative electrode potential": phi_s_n, "Electrolyte potential": phi_e, "Positive electrode potential": phi_s_p, "Terminal voltage": voltage, } self.events += [ pybamm.Event("Minimum voltage", voltage - param.voltage_low_cut), pybamm.Event("Maximum voltage", voltage - param.voltage_high_cut), ]
def _process_symbol(self, symbol): """ See :meth:`ParameterValues.process_symbol()`. """ if isinstance(symbol, pybamm.Parameter): value = self[symbol.name] if isinstance(value, numbers.Number): # Scalar inherits name (for updating parameters) and domain (for # Broadcast) return pybamm.Scalar(value, name=symbol.name, domain=symbol.domain) elif isinstance(value, pybamm.Symbol): new_value = self.process_symbol(value) new_value.domain = symbol.domain return new_value else: raise TypeError("Cannot process parameter '{}'".format(value)) elif isinstance(symbol, pybamm.FunctionParameter): new_children = [] for child in symbol.children: if symbol.diff_variable is not None and any( x.id == symbol.diff_variable.id for x in child.pre_order()): # Wrap with NotConstant to avoid simplification, # which would stop symbolic diff from working properly new_child = pybamm.NotConstant(child.new_copy()) new_children.append(self.process_symbol(new_child)) else: new_children.append(self.process_symbol(child)) function_name = self[symbol.name] # Create Function or Interpolant or Scalar object if isinstance(function_name, tuple): # If function_name is a tuple then it should be (name, data) and we need # to create an Interpolant name, data = function_name function = pybamm.Interpolant(data[:, 0], data[:, 1], *new_children, name=name) # Define event to catch extrapolation. In these events the sign is # important: it should be positive inside of the range and negative # outside of it self.parameter_events.append( pybamm.Event( "Interpolant {} lower bound".format(name), pybamm.min(new_children[0] - min(data[:, 0])), pybamm.EventType.INTERPOLANT_EXTRAPOLATION, )) self.parameter_events.append( pybamm.Event( "Interpolant {} upper bound".format(name), pybamm.min(max(data[:, 0]) - new_children[0]), pybamm.EventType.INTERPOLANT_EXTRAPOLATION, )) elif isinstance(function_name, numbers.Number): # If the "function" is provided is actually a scalar, return a Scalar # object instead of throwing an error. # Also use ones_like so that we get the right shapes function = pybamm.Scalar( function_name, name=symbol.name) * pybamm.ones_like(*new_children) elif (isinstance(function_name, pybamm.Symbol) and function_name.evaluates_to_number()): # If the "function" provided is a pybamm scalar-like, use ones_like to # get the right shape # This also catches input parameters function = function_name * pybamm.ones_like(*new_children) elif callable(function_name): # otherwise evaluate the function to create a new PyBaMM object function = function_name(*new_children) elif isinstance(function_name, pybamm.Interpolant): function = function_name else: raise TypeError( "Parameter provided for '{}' ".format(symbol.name) + "is of the wrong type (should either be scalar-like or callable)" ) # Differentiate if necessary if symbol.diff_variable is None: function_out = function else: # return differentiated function new_diff_variable = self.process_symbol(symbol.diff_variable) function_out = function.diff(new_diff_variable) # Convert possible float output to a pybamm scalar if isinstance(function_out, numbers.Number): return pybamm.Scalar(function_out) # Process again just to be sure return self.process_symbol(function_out) elif isinstance(symbol, pybamm.BinaryOperator): # process children new_left = self.process_symbol(symbol.left) new_right = self.process_symbol(symbol.right) # Special case for averages, which can appear as "integral of a broadcast" # divided by "integral of a broadcast" # this construction seems very specific but can appear often when averaging if (isinstance(symbol, pybamm.Division) # right is integral(Broadcast(1)) and (isinstance(new_right, pybamm.Integral) and isinstance(new_right.child, pybamm.Broadcast) and new_right.child.child.id == pybamm.Scalar(1).id) # left is integral and isinstance(new_left, pybamm.Integral)): # left is integral(Broadcast) if (isinstance(new_left.child, pybamm.Broadcast) and new_left.child.child.domain == []): integrand = new_left.child if integrand.auxiliary_domains == {}: return integrand.orphans[0] else: domain = integrand.auxiliary_domains["secondary"] if "tertiary" not in integrand.auxiliary_domains: return pybamm.PrimaryBroadcast( integrand.orphans[0], domain) else: auxiliary_domains = { "secondary": integrand.auxiliary_domains["tertiary"] } return pybamm.FullBroadcast( integrand.orphans[0], domain, auxiliary_domains) # left is "integral of concatenation of broadcasts" elif isinstance(new_left.child, pybamm.Concatenation) and all( isinstance(child, pybamm.Broadcast) for child in new_left.child.children): return self.process_symbol(pybamm.x_average( new_left.child)) # make new symbol, ensure domain remains the same new_symbol = symbol._binary_new_copy(new_left, new_right) new_symbol.domain = symbol.domain return new_symbol # Unary operators elif isinstance(symbol, pybamm.UnaryOperator): new_child = self.process_symbol(symbol.child) new_symbol = symbol._unary_new_copy(new_child) # ensure domain remains the same new_symbol.domain = symbol.domain return new_symbol # Functions elif isinstance(symbol, pybamm.Function): new_children = [ self.process_symbol(child) for child in symbol.children ] return symbol._function_new_copy(new_children) # Concatenations elif isinstance(symbol, pybamm.Concatenation): new_children = [ self.process_symbol(child) for child in symbol.children ] return symbol._concatenation_new_copy(new_children) else: # Backup option: return new copy of the object try: return symbol.new_copy() except NotImplementedError: raise NotImplementedError( "Cannot process parameters for symbol of type '{}'".format( type(symbol)))
def test_min(self): a = pybamm.StateVector(slice(0, 3)) y_test = np.array([1, 2, 3]) fun = pybamm.min(a) self.assertIsInstance(fun, pybamm.Function) self.assertEqual(fun.evaluate(y=y_test), 1)
def test_model_solver_dae_nonsmooth(self): whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2") discontinuity = 0.6 # Create three different models with the same solution, each expressing the # discontinuity in a different way # first model explicitly adds a discontinuity event def nonsmooth_rate(t): return 0.1 * (t < discontinuity) + 0.1 rate = pybamm.Function(nonsmooth_rate, pybamm.t) model1 = pybamm.BaseModel() model1.rhs = {var1: rate * var1} model1.algebraic = {var2: var2} model1.initial_conditions = {var1: 1, var2: 0} model1.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event( "nonsmooth rate", pybamm.Scalar(discontinuity), pybamm.EventType.DISCONTINUITY, ), ] # second model implicitly adds a discontinuity event via a heaviside function model2 = pybamm.BaseModel() model2.rhs = {var1: (0.1 * (pybamm.t < discontinuity) + 0.1) * var1} model2.algebraic = {var2: var2} model2.initial_conditions = {var1: 1, var2: 0} model2.events = [pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5))] # third model implicitly adds a discontinuity event via another heaviside # function model3 = pybamm.BaseModel() model3.rhs = {var1: (-0.1 * (discontinuity < pybamm.t) + 0.2) * var1} model3.algebraic = {var2: var2} model3.initial_conditions = {var1: 1, var2: 0} model3.events = [pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5))] for model in [model1, model2, model3]: disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8) # create two time series, one without a time point on the discontinuity, # and one with t_eval1 = np.linspace(0, 5, 10) t_eval2 = np.insert(t_eval1, np.searchsorted(t_eval1, discontinuity), discontinuity) solution1 = solver.solve(model, t_eval1) solution2 = solver.solve(model, t_eval2) # check time vectors for solution in [solution1, solution2]: # time vectors are ordered self.assertTrue(np.all(solution.t[:-1] <= solution.t[1:])) # time value before and after discontinuity is an epsilon away dindex = np.searchsorted(solution.t, discontinuity) value_before = solution.t[dindex - 1] value_after = solution.t[dindex] self.assertEqual(value_before + sys.float_info.epsilon, discontinuity) self.assertEqual(value_after - sys.float_info.epsilon, discontinuity) # both solution time vectors should have same number of points self.assertEqual(len(solution1.t), len(solution2.t)) # check solution for solution in [solution1, solution2]: np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[-1], 2.5) var1_soln = np.exp(0.2 * solution.t) y0 = np.exp(0.2 * discontinuity) var1_soln[solution.t > discontinuity] = y0 * np.exp( 0.1 * (solution.t[solution.t > discontinuity] - discontinuity)) np.testing.assert_allclose(solution.y[0], var1_soln, rtol=1e-06)
def __init__(self, name="Single Particle Model"): super().__init__({}, name) pybamm.citations.register("Marquis2019") # `param` is a class containing all the relevant parameters and functions for # this model. These are purely symbolic at this stage, and will be set by the # `ParameterValues` class when the model is processed. param = self.param ###################### # Variables ###################### # Variables that depend on time only are created without a domain Q = pybamm.Variable("Discharge capacity [A.h]") # Variables that vary spatially are created with a domain c_s_n = pybamm.Variable( "X-averaged negative particle concentration", domain="negative particle" ) c_s_p = pybamm.Variable( "X-averaged positive particle concentration", domain="positive particle" ) # Constant temperature T = param.T_init ###################### # Other set-up ###################### # Current density i_cell = param.current_with_time j_n = i_cell / param.l_n j_p = -i_cell / param.l_p ###################### # State of Charge ###################### I = param.dimensional_current_with_time # The `rhs` dictionary contains differential equations, with the key being the # variable in the d/dt self.rhs[Q] = I * param.timescale / 3600 # Initial conditions must be provided for the ODEs self.initial_conditions[Q] = pybamm.Scalar(0) ###################### # Particles ###################### # The div and grad operators will be converted to the appropriate matrix # multiplication at the discretisation stage N_s_n = -param.D_n(c_s_n, T) * pybamm.grad(c_s_n) N_s_p = -param.D_p(c_s_p, T) * pybamm.grad(c_s_p) self.rhs[c_s_n] = -(1 / param.C_n) * pybamm.div(N_s_n) self.rhs[c_s_p] = -(1 / param.C_p) * pybamm.div(N_s_p) # Surf takes the surface value of a variable, i.e. its boundary value on the # right side. This is also accessible via `boundary_value(x, "right")`, with # "left" providing the boundary value of the left side c_s_surf_n = pybamm.surf(c_s_n) c_s_surf_p = pybamm.surf(c_s_p) # Boundary conditions must be provided for equations with spatial derivatives self.boundary_conditions[c_s_n] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( -param.C_n * j_n / param.a_R_n / param.D_n(c_s_surf_n, T), "Neumann", ), } self.boundary_conditions[c_s_p] = { "left": (pybamm.Scalar(0), "Neumann"), "right": ( -param.C_p * j_p / param.a_R_p / param.gamma_p / param.D_p(c_s_surf_p, T), "Neumann", ), } # c_n_init and c_p_init are functions, but for the SPM we evaluate them at x=0 # and x=1 since there is no x-dependence in the particles self.initial_conditions[c_s_n] = param.c_n_init(0) self.initial_conditions[c_s_p] = param.c_p_init(1) # Events specify points at which a solution should terminate self.events += [ pybamm.Event( "Minimum negative particle surface concentration", pybamm.min(c_s_surf_n) - 0.01, ), pybamm.Event( "Maximum negative particle surface concentration", (1 - 0.01) - pybamm.max(c_s_surf_n), ), pybamm.Event( "Minimum positive particle surface concentration", pybamm.min(c_s_surf_p) - 0.01, ), pybamm.Event( "Maximum positive particle surface concentration", (1 - 0.01) - pybamm.max(c_s_surf_p), ), ] # Note that the SPM does not have any algebraic equations, so the `algebraic` # dictionary remains empty ###################### # (Some) variables ###################### # Interfacial reactions j0_n = param.j0_n(1, c_s_surf_n, T) / param.C_r_n j0_p = param.gamma_p * param.j0_p(1, c_s_surf_p, T) / param.C_r_p eta_n = (2 / param.ne_n) * pybamm.arcsinh(j_n / (2 * j0_n)) eta_p = (2 / param.ne_p) * pybamm.arcsinh(j_p / (2 * j0_p)) phi_s_n = 0 phi_e = -eta_n - param.U_n(c_s_surf_n, T) phi_s_p = eta_p + phi_e + param.U_p(c_s_surf_p, T) V = phi_s_p whole_cell = ["negative electrode", "separator", "positive electrode"] # The `variables` dictionary contains all variables that might be useful for # visualising the solution of the model # Primary broadcasts are used to broadcast scalar quantities across a domain # into a vector of the right shape, for multiplying with other vectors self.variables = { "Negative particle surface concentration": pybamm.PrimaryBroadcast( c_s_surf_n, "negative electrode" ), "Electrolyte concentration": pybamm.PrimaryBroadcast(1, whole_cell), "Positive particle surface concentration": pybamm.PrimaryBroadcast( c_s_surf_p, "positive electrode" ), "Current [A]": I, "Negative electrode potential": pybamm.PrimaryBroadcast( phi_s_n, "negative electrode" ), "Electrolyte potential": pybamm.PrimaryBroadcast(phi_e, whole_cell), "Positive electrode potential": pybamm.PrimaryBroadcast( phi_s_p, "positive electrode" ), "Terminal voltage": V, } self.events += [ pybamm.Event("Minimum voltage", V - param.voltage_low_cut), pybamm.Event("Maximum voltage", V - param.voltage_high_cut), ]
def test_model_solver_dae_multiple_nonsmooth_python(self): model = pybamm.BaseModel() model.convert_to_format = "python" whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) a = 0.6 discontinuities = (np.arange(3) + 1) * a model.rhs = {var1: pybamm.Modulo(pybamm.t, a)} model.algebraic = {var2: 2 * var1 - var2} model.initial_conditions = {var1: 0, var2: 0} model.events = [ pybamm.Event("var1 = 0.55", pybamm.min(var1 - 0.55)), pybamm.Event("var2 = 1.2", pybamm.min(var2 - 1.2)), ] for discontinuity in discontinuities: model.events.append( pybamm.Event("nonsmooth rate", pybamm.Scalar(discontinuity))) disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8, root_method="lm") # create two time series, one without a time point on the discontinuity, # and one with t_eval1 = np.linspace(0, 2, 10) t_eval2 = np.insert(t_eval1, np.searchsorted(t_eval1, discontinuities), discontinuities) solution1 = solver.solve(model, t_eval1) solution2 = solver.solve(model, t_eval2) # check time vectors for solution in [solution1, solution2]: # time vectors are ordered self.assertTrue(np.all(solution.t[:-1] <= solution.t[1:])) # time value before and after discontinuity is an epsilon away for discontinuity in discontinuities: dindex = np.searchsorted(solution.t, discontinuity) value_before = solution.t[dindex - 1] value_after = solution.t[dindex] self.assertEqual(value_before + sys.float_info.epsilon, discontinuity) self.assertEqual(value_after - sys.float_info.epsilon, discontinuity) # both solution time vectors should have same number of points self.assertEqual(len(solution1.t), len(solution2.t)) # check solution for solution in [solution1, solution2]: np.testing.assert_array_less(solution.y[0, :-1], 0.55) np.testing.assert_array_less(solution.y[-1, :-1], 1.2) var1_soln = (solution.t % a)**2 / 2 + a**2 / 2 * (solution.t // a) var2_soln = 2 * var1_soln np.testing.assert_allclose(solution.y[0], var1_soln, rtol=1e-06) np.testing.assert_allclose(solution.y[-1], var2_soln, rtol=1e-06)
def test_model_solver_dae_nonsmooth_python(self): model = pybamm.BaseModel() model.convert_to_format = "python" whole_cell = ["negative electrode", "separator", "positive electrode"] var1 = pybamm.Variable("var1", domain=whole_cell) var2 = pybamm.Variable("var2", domain=whole_cell) discontinuity = 0.6 def nonsmooth_rate(t): return 0.1 * int(t < discontinuity) + 0.1 def nonsmooth_mult(t): return int(t < discontinuity) + 1.0 rate = pybamm.Function(nonsmooth_rate, pybamm.t) mult = pybamm.Function(nonsmooth_mult, pybamm.t) # put in an extra heaviside with no time dependence, this should be ignored by # the solver i.e. no extra discontinuities added model.rhs = {var1: rate * var1 + (var1 < 0)} model.algebraic = {var2: mult * var1 - var2} model.initial_conditions = {var1: 1, var2: 2} model.events = [ pybamm.Event("var1 = 1.5", pybamm.min(var1 - 1.5)), pybamm.Event("var2 = 2.5", pybamm.min(var2 - 2.5)), pybamm.Event( "nonsmooth rate", pybamm.Scalar(discontinuity), pybamm.EventType.DISCONTINUITY, ), pybamm.Event( "nonsmooth mult", pybamm.Scalar(discontinuity), pybamm.EventType.DISCONTINUITY, ), ] disc = get_discretisation_for_testing() disc.process_model(model) # Solve solver = pybamm.ScikitsDaeSolver(rtol=1e-8, atol=1e-8, root_method="lm") # create two time series, one without a time point on the discontinuity, # and one with t_eval1 = np.linspace(0, 5, 10) t_eval2 = np.insert(t_eval1, np.searchsorted(t_eval1, discontinuity), discontinuity) solution1 = solver.solve(model, t_eval1) solution2 = solver.solve(model, t_eval2) # check time vectors for solution in [solution1, solution2]: # time vectors are ordered self.assertTrue(np.all(solution.t[:-1] <= solution.t[1:])) # time value before and after discontinuity is an epsilon away dindex = np.searchsorted(solution.t, discontinuity) value_before = solution.t[dindex - 1] value_after = solution.t[dindex] self.assertEqual(value_before + sys.float_info.epsilon, discontinuity) self.assertEqual(value_after - sys.float_info.epsilon, discontinuity) # both solution time vectors should have same number of points self.assertEqual(len(solution1.t), len(solution2.t)) # check solution for solution in [solution1, solution2]: np.testing.assert_array_less(solution.y[0], 1.5) np.testing.assert_array_less(solution.y[-1], 2.5) var1_soln = np.exp(0.2 * solution.t) y0 = np.exp(0.2 * discontinuity) var1_soln[solution.t > discontinuity] = y0 * np.exp( 0.1 * (solution.t[solution.t > discontinuity] - discontinuity)) var2_soln = 2 * var1_soln var2_soln[solution.t > discontinuity] = var1_soln[ solution.t > discontinuity] np.testing.assert_allclose(solution.y[0], var1_soln, rtol=1e-06) np.testing.assert_allclose(solution.y[-1], var2_soln, rtol=1e-06)
def _get_standard_concentration_variables( self, c_s, c_s_xav=None, c_s_rav=None, c_s_av=None, c_s_surf=None ): """ All particle submodels must provide the particle concentration as an argument to this method. Some submodels solve for quantities other than the concentration itself, for example the 'FickianSingleParticle' models solves for the x-averaged concentration. In such cases the variables being solved for (set in 'get_fundamental_variables') must also be passed as keyword arguments. If not passed as keyword arguments, the various average concentrations and surface concentration are computed automatically from the particle concentration. """ # Get surface concentration if not provided as fundamental variable to # solve for c_s_surf = c_s_surf or pybamm.surf(c_s) c_s_surf_av = pybamm.x_average(c_s_surf) if self.domain == "Negative": c_scale = self.param.c_n_max elif self.domain == "Positive": c_scale = self.param.c_p_max # Get average concentration(s) if not provided as fundamental variable to # solve for c_s_xav = c_s_xav or pybamm.x_average(c_s) c_s_rav = c_s_rav or pybamm.r_average(c_s) c_s_av = c_s_av or pybamm.r_average(c_s_xav) variables = { self.domain + " particle concentration": c_s, self.domain + " particle concentration [mol.m-3]": c_s * c_scale, self.domain + " particle concentration [mol.m-3]": c_s * c_scale, "X-averaged " + self.domain.lower() + " particle concentration": c_s_xav, "X-averaged " + self.domain.lower() + " particle concentration [mol.m-3]": c_s_xav * c_scale, "R-averaged " + self.domain.lower() + " particle concentration": c_s_rav, "R-averaged " + self.domain.lower() + " particle concentration [mol.m-3]": c_s_rav * c_scale, "Average " + self.domain.lower() + " particle concentration": c_s_av, "Average " + self.domain.lower() + " particle concentration [mol.m-3]": c_s_av * c_scale, self.domain + " particle surface concentration": c_s_surf, self.domain + " particle surface concentration [mol.m-3]": c_scale * c_s_surf, "X-averaged " + self.domain.lower() + " particle surface concentration": c_s_surf_av, "X-averaged " + self.domain.lower() + " particle surface concentration [mol.m-3]": c_scale * c_s_surf_av, self.domain + " electrode extent of lithiation": c_s_rav, "X-averaged " + self.domain.lower() + " electrode extent of lithiation": c_s_av, "Minimum " + self.domain.lower() + " particle concentration": pybamm.min(c_s), "Maximum " + self.domain.lower() + " particle concentration": pybamm.max(c_s), "Minimum " + self.domain.lower() + " particle concentration [mol.m-3]": pybamm.min(c_s) * c_scale, "Maximum " + self.domain.lower() + " particle concentration [mol.m-3]": pybamm.max(c_s) * c_scale, "Minimum " + self.domain.lower() + " particle surface concentration": pybamm.min(c_s_surf), "Maximum " + self.domain.lower() + " particle surface concentration": pybamm.max(c_s_surf), "Minimum " + self.domain.lower() + " particle surface concentration [mol.m-3]": pybamm.min(c_s_surf) * c_scale, "Maximum " + self.domain.lower() + " particle surface concentration [mol.m-3]": pybamm.max(c_s_surf) * c_scale, } return variables