Ejemplo n.º 1
0
def run_test(args):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    targets, sentences = data.read_data(raw_data_path=config['test_path'],
                                        preprocessor=EnglishPreProcessor(),
                                        is_train=False)
    lines = list(zip(sentences, targets))
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(lines=test_data,
                                              example_type='test',
                                              cached_examples_file=config[
                                                                       'data_dir'] / f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(examples=test_examples,
                                              max_seq_len=args.eval_max_seq_len,
                                              cached_features_file=config[
                                                                       'data_dir'] / "cached_test_features_{}_{}".format(
                                                  args.eval_max_seq_len, args.arch
                                              ))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.train_batch_size)
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)
    print(result)
Ejemplo n.º 2
0
def main():
    # **************************** 基础信息 ***********************
    logger = init_logger(log_name=config['model']['arch'],
                         log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    device = 'cuda:%d' % config['train']['n_gpu'][0] if len(
        config['train']['n_gpu']) else 'cpu'
    seed_everything(seed=config['train']['seed'], device=device)
    logger.info('starting load data from disk')
    id2label = {value: key for key, value in config['label2id'].items()}
    #**************************** 数据生成 ***********************
    DT = DataTransformer(logger=logger, seed=config['train']['seed'])

    # 读取数据集以及数据划分
    targets, sentences = DT.read_data(
        raw_data_path=config['data']['test_file_path'],
        preprocessor=EnglishPreProcessor(),
        is_train=False)
    tokenizer = BertTokenizer(
        vocab_file=config['pretrained']['bert']['vocab_path'],
        do_lower_case=config['train']['do_lower_case'])
    # train
    test_dataset = CreateDataset(data=list(zip(sentences, targets)),
                                 tokenizer=tokenizer,
                                 max_seq_len=config['train']['max_seq_len'],
                                 seed=config['train']['seed'],
                                 example_type='test')
    # 验证数据集
    test_loader = DataLoader(dataset=test_dataset,
                             batch_size=config['train']['batch_size'],
                             num_workers=config['train']['num_workers'],
                             shuffle=False,
                             drop_last=False,
                             pin_memory=False)

    # **************************** 模型 ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(
        config['pretrained']['bert']['bert_model_dir'],
        cache_dir=config['output']['cache_dir'],
        num_classes=len(id2label))
    # **************************** training model ***********************
    logger.info('model predicting....')
    predicter = Predicter(
        model=model,
        logger=logger,
        n_gpu=config['train']['n_gpu'],
        model_path=config['output']['checkpoint_dir'] /
        f"best_{config['model']['arch']}_model.pth",
    )
    # 拟合模型
    result = predicter.predict(data=test_loader)
    print(result)

    # 释放显存
    if len(config['train']['n_gpu']) > 0:
        torch.cuda.empty_cache()
Ejemplo n.º 3
0
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='kaggle', type=str)
    parser.add_argument("--epochs", default=6, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted", default=1, type=int, help='1 : True  0:False ')
    parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument("--warmup_proportion", default=0.1, type=int, )
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')

    args = parser.parse_args()
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    init_logger(log_file=config['log_dir'] / f"{args.arch}.log")

    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        targets, sentences = data.read_data(raw_data_path=config['raw_data_path'],
                                            preprocessor=EnglishPreProcessor(),
                                            is_train=True)
        data.train_val_split(X=sentences, y=targets, shuffle=True, stratify=False,
                             valid_size=args.valid_size, data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)
Ejemplo n.º 4
0
def main():
    # **************************** Log initial data ***********************
    logger = init_logger(log_name=config['model']['arch'],
                         log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    device = f"cuda: {config['train']['n_gpu'][0] if len(config['train']['n_gpu']) else 'cpu'}"
    seed_everything(seed=config['train']['seed'], device=device)
    logger.info('starting load data from disk')
    id2label = {value: key for key, value in config['label2id'].items()}

    DT = DataTransformer(logger=logger, seed=config['train']['seed'])

    targets, sentences = DT.read_data(
        raw_data_path=config['data']['raw_data_path'],
        preprocessor=EnglishPreProcessor(),
        is_train=True)

    train, valid = DT.train_val_split(
        X=sentences,
        y=targets,
        save=True,
        shuffle=True,
        stratify=False,
        valid_size=config['train']['valid_size'],
        train_path=config['data']['train_file_path'],
        valid_path=config['data']['valid_file_path'])

    tokenizer = BertTokenizer(
        vocab_file=config['pretrained']['bert']['vocab_path'],
        do_lower_case=config['train']['do_lower_case'])

    # train
    train_dataset = CreateDataset(data=train,
                                  tokenizer=tokenizer,
                                  max_seq_len=config['train']['max_seq_len'],
                                  seed=config['train']['seed'],
                                  example_type='train')
    # valid
    valid_dataset = CreateDataset(data=valid,
                                  tokenizer=tokenizer,
                                  max_seq_len=config['train']['max_seq_len'],
                                  seed=config['train']['seed'],
                                  example_type='valid')
    # train loader
    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=config['train']['batch_size'],
                              num_workers=config['train']['num_workers'],
                              shuffle=True,
                              drop_last=False,
                              pin_memory=False)
    # validation set loader
    valid_loader = DataLoader(dataset=valid_dataset,
                              batch_size=config['train']['batch_size'],
                              num_workers=config['train']['num_workers'],
                              shuffle=False,
                              drop_last=False,
                              pin_memory=False)

    # **************************** initialize model ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(
        config['pretrained']['bert']['bert_model_dir'],
        cache_dir=config['output']['cache_dir'],
        num_classes=len(id2label))

    # ************************** set params *************************
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    num_train_steps = int(
        len(train_dataset.examples) / config['train']['batch_size'] /
        config['train']['gradient_accumulation_steps'] *
        config['train']['epochs'])
    # t_total: total number of training steps for the learning rate schedule
    # warmup: portion of t_total for the warmup
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config['train']['learning_rate'],
                         warmup=config['train']['warmup_proportion'],
                         t_total=num_train_steps)

    # **************************** callbacks ***********************
    logger.info("initializing callbacks")
    # model checkpoint
    model_checkpoint = ModelCheckpoint(
        checkpoint_dir=config['output']['checkpoint_dir'],
        mode=config['callbacks']['mode'],
        monitor=config['callbacks']['monitor'],
        save_best_only=config['callbacks']['save_best_only'],
        arch=config['model']['arch'],
        logger=logger)
    # monitor
    train_monitor = TrainingMonitor(file_dir=config['output']['figure_dir'],
                                    arch=config['model']['arch'])
    # learning rate scheduler
    lr_scheduler = BertLR(optimizer=optimizer,
                          learning_rate=config['train']['learning_rate'],
                          t_total=num_train_steps,
                          warmup=config['train']['warmup_proportion'])

    # **************************** training model ***********************
    logger.info('training model....')

    train_configs = {
        'model':
        model,
        'logger':
        logger,
        'optimizer':
        optimizer,
        'resume':
        config['train']['resume'],
        'epochs':
        config['train']['epochs'],
        'n_gpu':
        config['train']['n_gpu'],
        'gradient_accumulation_steps':
        config['train']['gradient_accumulation_steps'],
        'epoch_metrics': [F1Score(average='micro', task_type='binary')],
        'batch_metrics': [AccuracyThresh(thresh=0.5)],
        'criterion':
        BCEWithLogLoss(),
        'model_checkpoint':
        model_checkpoint,
        'training_monitor':
        train_monitor,
        'lr_scheduler':
        lr_scheduler,
        'early_stopping':
        None,
        'verbose':
        1
    }

    trainer = Trainer(train_configs=train_configs)
    trainer.train(train_data=train_loader, valid_data=valid_loader)
    if len(config['train']['n_gpu']) > 0:
        torch.cuda.empty_cache()
Ejemplo n.º 5
0
def run_test(args, test=False, k=7, med_map='pybert/dataset/med_map.csv'):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    targets, sentences = data.read_data(raw_data_path=config['test_path'],
                                        preprocessor=EnglishPreProcessor(),
                                        is_train=test)
    print(
        f'-----------------------------------------\ntargets {targets}\n---------------------------------------------------'
    )
    lines = list(zip(sentences, targets))
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(
        lines=test_data,
        example_type='test',
        cached_examples_file=config['data_dir'] /
        f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(
        examples=test_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_test_features_{}_{}".format(args.eval_max_seq_len, args.arch))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=args.train_batch_size)
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'])

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu,
                          test=test)
    if test:
        results, targets = predictor.predict(data=test_dataloader)
        #print(f'results {results.shape}')
        #print(f'targets {targets.shape}')
        result = dict()
        metrics = [Recall(), Acc()]
        for metric in metrics:
            metric.reset()
            metric(logits=results, target=targets)
            value = metric.value()
            if value is not None:
                result[f'valid_{metric.name()}'] = value
        return result
    else:
        results = predictor.predict(data=test_dataloader)
        pred = np.argsort(results)[:, -k:][:, ::-1]
        with open('pybert/dataset/med_map.csv', mode='r') as infile:
            reader = csv.reader(infile)
            med_dict = {int(rows[0]): rows[1] for rows in reader}
            pred = np.vectorize(med_dict.get)(pred)
            return pred
Ejemplo n.º 6
0
def main():
    # **************************** log ***********************
    logger = init_logger(log_name=config['model']['arch'], log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    device = 'cuda:%d' % config['train']['n_gpu'][0] if len(config['train']['n_gpu']) else 'cpu'
    seed_everything(seed=config['train']['seed'],device=device)
    logger.info('starting load data from disk')
    id2label = {value: key for key, value in config['label2id'].items()}
    #**************************** data input ***********************
    DT = DataTransformer(logger = logger,seed = config['train']['seed'])

    # read test data
    targets, sentences = DT.read_data(raw_data_path=config['data']['test_file_path'],
                                      preprocessor=EnglishPreProcessor(),
                                      is_train=False)
    tokenizer = BertTokenizer(vocab_file=config['pretrained']['bert']['vocab_path'],
                              do_lower_case=config['train']['do_lower_case'])
    # prepare test dataset
    test_dataset   = CreateDataset(data  = list(zip(sentences,targets)),
                                   tokenizer = tokenizer,
                                   max_seq_len = config['train']['max_seq_len'],
                                   seed = config['train']['seed'],
                                   example_type = 'test')
    # pytorch dataloader
    test_loader = DataLoader(dataset     = test_dataset,
                             batch_size  = config['train']['batch_size'],
                             num_workers = config['train']['num_workers'],
                             shuffle     = False,
                             drop_last   = False,
                             pin_memory  = False)

    # **************************** start model ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(config['pretrained']['bert']['bert_model_dir'],
                                     cache_dir=config['output']['cache_dir'],
                                     num_classes = len(id2label))
    # **************************** training model ***********************
    logger.info('model predicting....')
    '''predicter = Predicter(model = model,
                         logger = logger,
                         n_gpu=config['train']['n_gpu'],
                         model_path = config['output']['checkpoint_dir'] / f"best_{config['model']['arch']}_model.pth",
                         )'''

    predicter = Predicter(model = model,
                         logger = logger,
                         n_gpu=config['train']['n_gpu'],
                         model_path = config['output']['checkpoint_dir'] / f"best_{config['model']['arch']}_model.pth"
                         )
    
    # predict results
    result = predicter.predict(data = test_loader)
    result = np.where(result > 0.5, 1, 0)  
    print('accuracy score', accuracy_score(targets, result))
    print('\nF1 score', f1_score(targets, result))
    print('\nclassification report', classification_report(targets, result))

    
    
    # empty cache after testing
    if len(config['train']['n_gpu']) > 0:
        torch.cuda.empty_cache()
Ejemplo n.º 7
0
def main():

    logger = init_logger(log_name=config['model']['arch'],
                         log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    device = 'cuda:%d' % config['train']['n_gpu'][0] if len(
        config['train']['n_gpu']) else 'cpu'
    seed_everything(seed=config['train']['seed'], device=device)
    logger.info('starting load data from disk')
    id2label = {value: key for key, value in config['label2id'].items()}

    DT = DataTransformer(logger=logger, seed=config['train']['seed'])

    targets, sentences, ids = DT.read_data(
        raw_data_path=config['data']['test_file_path'],
        preprocessor=EnglishPreProcessor(),
        is_train=False)
    tokenizer = BertTokenizer(
        vocab_file=config['pretrained']['bert']['vocab_path'],
        do_lower_case=config['train']['do_lower_case'])
    # test dataset
    test_dataset = CreateDataset(data=list(zip(sentences, targets)),
                                 tokenizer=tokenizer,
                                 max_seq_len=config['train']['max_seq_len'],
                                 seed=config['train']['seed'],
                                 example_type='test')

    test_loader = DataLoader(dataset=test_dataset,
                             batch_size=config['train']['batch_size'],
                             num_workers=config['train']['num_workers'],
                             shuffle=False,
                             drop_last=False,
                             pin_memory=False)

    # **************************** load pretrained model from cache ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(
        config['pretrained']['bert']['bert_model_dir'],
        cache_dir=config['output']['cache_dir'],
        num_classes=len(id2label))
    # ****************************  inference ***********************
    logger.info('model predicting....')
    predicter = Predicter(
        model=model,
        logger=logger,
        n_gpu=config['train']['n_gpu'],
        model_path=config['output']['checkpoint_dir'] /
        f"best_{config['model']['arch']}_model.pth",
    )
    # predict
    result = predicter.predict(data=test_loader)

    file = open(config['output']['inference_output_dir'], 'w')

    for index, line, score in zip(ids, sentences, result):
        file.write(str(index) + '\t' + line + '\t' + str(score[0]))
        file.write('\n')
    file.close()

    if len(config['train']['n_gpu']) > 0:
        torch.cuda.empty_cache()
def main():
    # **************************** SETUP/READ FROM CONFIG ***********************
    logger = init_logger(log_name=config['model']['arch'],
                         log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    device = 'cuda:%d' % config['train']['n_gpu'][0] if len(
        config['train']['n_gpu']) else 'cpu'
    seed_everything(seed=config['train']['seed'], device=device)
    logger.info('starting load data from disk')
    id2label = {value: key for key, value in config['label2id'].items()}
    #**************************** ***********************
    DT = DataTransformer(logger=logger, seed=config['train']['seed'])

    # Preprocessing
    targets, sentences = DT.read_data(
        raw_data_path=config['data']['test_file_path'],
        preprocessor=EnglishPreProcessor(),
        is_train=False)
    tokenizer = BertTokenizer(
        vocab_file=config['pretrained']['bert']['vocab_path'],
        do_lower_case=config['train']['do_lower_case'])
    #**************************** TOKENIZING *********************************
    test_dataset = CreateDataset(data=list(zip(sentences, targets)),
                                 tokenizer=tokenizer,
                                 max_seq_len=config['train']['max_seq_len'],
                                 seed=config['train']['seed'],
                                 example_type='test')
    #*************************** DATALOADER ******************************
    test_loader = DataLoader(dataset=test_dataset,
                             batch_size=config['train']['batch_size'],
                             num_workers=config['train']['num_workers'],
                             shuffle=False,
                             drop_last=False,
                             pin_memory=False)

    # **************************** LOAD MODEL ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(
        config['pretrained']['bert']['bert_model_dir'],
        cache_dir=config['output']['cache_dir'],
        num_classes=len(id2label))
    # **************************** RUNNING PREDICTIONS ***********************
    logger.info('model predicting....')
    predicter = Predicter(
        model=model,
        logger=logger,
        n_gpu=config['train']['n_gpu'],
        model_path=config['output']['checkpoint_dir'] /
        f"best_{config['model']['arch']}_model.pth",
    )
    # *************************OUTPUT RESULTS TO CSV*************************
    result = predicter.predict(data=test_loader)
    print(result)
    df = pd.DataFrame(result)
    cols = [
        'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'
    ]
    df.columns = cols
    print(df.head())
    df.to_csv('pybert/output/result/result.csv')

    # ******************************EMPTY GPU CACHE************************************
    if len(config['train']['n_gpu']) > 0:
        torch.cuda.empty_cache()
                    html.unescape(abstract)).lstrip(';\n\n')
                description = line[3]
                description = html2text.html2text(
                    html.unescape(description)).lstrip(';\n\n')
                input = title + ';' + abstract + ';' + description
                labels = line[4:]
                onehot_label = np.zeros(645)
                for label in labels:
                    for i, subclass in enumerate(subclass_list):
                        if subclass == label:
                            onehot_label[i] = 1
                            break
                if preprocessor:
                    input = preprocessor(input)
                if is_train:
                    train_sentences.append(input)
                    train_targets.append(onehot_label)
                else:
                    val_sentences.append(input)
                    val_targets.append(onehot_label)
        return train_targets, train_sentences, val_targets, val_sentences


if __name__ == "__main__":
    data = TaskData()
    train_targets, train_sentences, val_targets, val_sentences = data.read_data(
        config,
        raw_data_path=
        "/Users/xiaohan/Desktop/bert_HMC/data/summary/summary_1574.csv",
        preprocessor=EnglishPreProcessor())